
Task and Message Co-scheduling Strategies in
Real-time Cyber-Physical Systems

Thesis submitted to the
Indian Institute of Technology Guwahati

for the award of the degree

of

Doctor of Philosophy
in

Computer Science and Engineering

Submitted by
Sanjit Kumar Roy

Under the guidance of
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology Guwahati

September, 2022

mailto:sanjit.roy@iitg.ac.in
http://www.facweb.iitkgp.ac.in/~arnab/
http://www.iitg.ac.in/cse/
http://www.iitg.ac.in

Abstract

Cyber-Physical Systems (CPSs), like those in the automotive and avionic do-
mains, smart grids, nuclear plants, etc., often consist of multiple control sub-
systems running on distributed processing platforms. Most of these control
systems are modeled as real-time independent tasks or Precedence-constrained
Task Graph (PTG), depending on the nature of interactions between their
functional components. These tasks typically read their input parameters via
sensors. The sensed inputs are then transmitted as messages over communi-
cation channels to processing elements where corresponding control outputs
are computed. The outputs in turn, are communicated to actuators as mes-
sages through communication channels. This dissertation presents several
novel real-time task-message co-scheduling strategies for safety-critical CPSs,
consisting of various types of task and execution platform scenarios.

The entire thesis work is composed of multiple contributions categorized
into four phases, each of which is targeted towards a distinct task/platform
scenario. The first phase delves with the design of co-scheduling strategies
for independent periodic real-time tasks, with associated input and output
messages, on a bus-based homogeneous multiprocessor system. Although
most scheduling approaches have traditionally been oriented towards homo-
geneous multiprocessors, continuous demands for higher performance and
reliability along with better thermal and power efficiencies, have created an
increasing trend towards distributed heterogeneous processor platforms. In
the second phase, we have considered the problem of scheduling real-time sys-
tems modeled as PTGs on fully-connected heterogeneous systems. The tasks
considered in both the first and second phases, may have multiple implemen-
tations designated as service-levels/quality-levels, with higher service-levels

producing more accurate results and contributing to higher rewards/Quality
of Service (QoS) for the system. In the third phase, we extend the prob-
lem of scheduling PTGs on fully-connected platforms, to CPS systems where
the processors are connected through a limited number of bus based shared
communication channels. While the third phase considers the problem of
scheduling a single PTG, the final phase solves the problem of scheduling
multiple independent periodic real-time PTGs. The works proposed in the
third and fourth phases, endeavour towards the maximization of slack within
the generated schedule, which can then be used to minimize energy dissipa-
tion in the system. The thesis proposes both optimal and heuristic solution
approaches for all its phases. Practical applicability and efficacy of the pre-
sented schemes have been extensively evaluated through simulation-based
experiments as well as real-world benchmarks.

Declaration

I certify that:

a. The work contained in this thesis is original and has been
done by me under the guidance of my supervisor.

b. The work has not been submitted to any other Institute for
any degree or diploma.

c. I have followed the guidelines provided by the Institute in
preparing the thesis.

d. I have conformed to the norms and guidelines given in the
Ethical Code of Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis,
figures, and text) from other sources, I have given due credit
to them by citing them in the text of the thesis and giving
their details in the references. Further, I have taken per-
mission from the copyright owners of the sources, whenever
necessary.

Sanjit Kumar Roy

mailto:sanjit.roy@iitg.ac.in

Copyright

Attention is drawn to the fact that copyright of this thesis rests with its
author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognize that its copyright rests
with its author and that no quotation from the thesis and no information
derived from it may be published without the prior written consent of the
author.

This thesis may be made available for consultation within the Indian Institute
of Technology Library and may be photocopied or lent to other libraries for
the purposes of consultation.

Signature of Author...

Sanjit Kumar Roy

mailto:sanjit.roy@iitg.ac.in

Certificate

This is to certify that this thesis entitled, “Task and Message
Co-scheduling Strategies in Real-time Cyber-Physical
Systems”, being submitted by Sanjit Kumar Roy, to the
Department of Computer Science and Engineering, Indian In-
stitute of Technology Guwahati, for partial fulfillment of the
award of the degree of Doctor of Philosophy, is a bonafide work
carried out by him under my supervision and guidance. The
thesis, in my opinion, is worthy of consideration for award of
the degree of Doctor of Philosophy in accordance with the reg-
ulation of the institute. To the best of my knowledge, it has not
been submitted elsewhere for the award of the degree.

.................................

Dr. Arnab Sarkar
Associate Professor

Advanced Technology Development Centre
IIT Kharagpur

mailto:sanjit.roy@iitg.ac.in
http://www.iitg.ac.in
http://www.iitg.ac.in
http://www.facweb.iitkgp.ac.in/~arnab/

Dedicated to
My son, parents and wife

Acknowledgments

I would like to thank several people who played an essential role in the
concretization of this thesis, directly and indirectly.

I would like to begin by thanking my Ph.D supervisor Prof. Arnab Sarkar.
I am immensely grateful and wish to express my deepest gratitude to Prof.
Sarkar for providing me guidance, inspiration, advice, support in every step
of my work, constantly worrying about my future career and well-being. I
feel very privileged to have had the opportunity to learn from and work with
him. His constant guidance and support paved the way for my development
as a research scientist and changed my personality, ability, and nature in
many ways. I have been fortunate to have such an advisor who gave me the
freedom to explore on my own and at the same time, provide the guidance to
recover when my steps faltered. I would also like to thank my administrative
supervisor Prof. Chandan Karfa for taking care of all the official formalities
that make my life easy at IIT Guwahati and for his continuous encouragement
during this journey.

Besides my advisors, I would like to thank other members of my doctoral
committee, Prof. Hemangee K. Kapoor, Prof. Arijit Sur, and Prof. Sukanta
Bhattacharjee, for their insightful comments and encouragement. Their com-
ments and suggestions helped me to widen my research from various perspec-
tives. I would also like to thank Prof. Santosh Biswas for his feedback on my
work. I am thankful to the external thesis examiners as well as the anony-
mous reviewers of my papers for their thoughtful suggestions and feedback.

As a Ph.D scholar, life without friends would be a nightmare. I am blessed
to have a myriad of friends. I am thankful to my dearest friend Projit,
whose belief in me, continuous support, and encouragement gave me the
strength and confidence to pursue a Ph.D. I would especially thank Niladri

da, Biswajit da, Suddhasil da, Shounak, Subhrendu and Ranajit da for their
constant support. I am deeply indebted to Rajesh, Rahul, Ramanuj, Supriyo,
and Diptesh for encouraging me throughout my Ph.D journey and providing
me their unconditional support with love, to sort out technical as well as
personal problems. I was fortunate to share many cherished memories at
IIT Guwahati with all of them. Many thanks to Sayani, Kankana, Rishabh,
Debabrata, Abothula for collaborating with me in research during my Ph.D
tenure. I would like to thank Piyoosh, Basina, Ujjwal da, Subrata, Sonjoy,
Sharma ji, Rakesh da, Sujoy for their support.

I would like to thank all the members of IIT Guwahati, especially the De-
partment of Computer Science and Engineering, for providing such a great
research environment. I also thank all the security personnel, mess workers,
canteen and housekeeping staff, who made my life smooth at the campus.
While it is not possible to mention each of them, I would like to express
my deepest gratitude to all the people who helped me directly or indirectly
during my Ph.D.

I am grateful to my parents for their unconditional love, sacrifice, encour-
agement and consistent support, in every event of my life. I am also very
fortunate to have wonderful in-laws who encouraged me at every step of my
Ph.D journey. I am forever indebted to my wife, Sudipta Ghosh. With-
out her love, sacrifice, constant encouragement and faith in me, none of this
would have been possible. She has been incredibly supportive of me through
the ups and downs over the past few years. I cannot thank her enough for
being such a wonderful wife and friend. Finally, my wholehearted thanks to
our little son Sri Pratyush Roy, who is the ultimate source of inspiration for
me.

Sanjit Kumar Roy

xiv

Contents

1 Introduction 1
1.1 Related Work . 4
1.2 Challenges . 6
1.3 Objectives . 7
1.4 Summary of work done . 8
1.5 Organization of the Thesis . 16

2 Background and Related Work 19
2.1 An Overview of Real-time Systems . 19

2.1.1 Application Layer . 20
2.1.1.1 Real-time Task Model 20

2.1.2 Real-time Scheduler . 22
2.1.3 Hardware Platform . 23

2.2 Types of Task Constraints: . 25
2.3 Classification of Real-Time Scheduling Algorithms 27
2.4 A Discussion with Motivational Examples 28
2.5 Multiprocessor Scheduling - A Brief Survey 40

2.5.1 An Overview of HEFT & PEFT 43
2.6 Summary . 45

3 QoS Aware Scheduling of Independent Task Sets on Homogeneous Dis-
tributed Systems 47
3.1 Problem Description . 48

xv

CONTENTS

3.1.1 An Optimal Solution Approach (MMCKP-DP) 50
3.1.2 Accurate Low Overhead Level Allocator (ALOLA) 52
3.1.3 Example: Service-level Assignment 55
3.1.4 Offline Schedule Generation . 56

3.2 Experiments and Results . 58
3.2.1 Data Generation Framework . 58
3.2.2 QoS Measurements . 59
3.2.3 Time Measurements: Results . 60

3.3 Case Study: Flight Management System 62
3.4 Applicability Considerations . 64
3.5 Summary . 67

4 Optimal Scheduling of PTGs on Heterogeneous Distributed Systems 69
4.1 The Task and Platform Models . 70
4.2 Earliest/Latest Start Times for PTG Nodes 72
4.3 Integer Linear Programming (ILP) Formulation: ILP - Service-level Al-

location with Timed Constraints (ILP-SATC) 74
4.3.1 Unique Start Time Constraint . 74
4.3.2 Resource Constraint . 74
4.3.3 Dependency Constraint . 75
4.3.4 Linearization of Non-linear Term 75
4.3.5 Deadline Constraint . 76
4.3.6 Objective Function . 76
4.3.7 Complexity Analysis . 76

4.4 ILP Formulation: ILP - Service-level Allocation with Non-overlapping
Constraints (ILP-SANC) . 77
4.4.1 Unique Resource Assignment: . 78
4.4.2 Unique Quality-level Assignment: 78
4.4.3 Dependency Constraint: . 78
4.4.4 Linearization of Non-linear Term 79
4.4.5 Non-overlapping Constraints: . 80
4.4.6 Deadline Constraint: . 81
4.4.7 Objective Function . 81

xvi

CONTENTS

4.4.8 Complexity Analysis . 81
4.5 Experimental Evaluation . 82
4.6 Case Study: Adaptive Cruise Controller 87
4.7 Summary . 89

5 Heuristic PTG Scheduling Strategies on Heterogeneous Distributed
Systems 91
5.1 The Task and Platform Models . 91
5.2 Heuristic Algorithms . 94

5.2.1 Global Slack Aware Quality-level Allocator (G-SAQA) 95
5.2.2 Total Slack Aware Quality-level Allocator (T-SAQA) 100

5.3 Experimental Evaluation . 103
5.3.1 Performance evaluation using benchmark Precedence-constrained

Task Graphs (PTGs) . 103
5.3.2 Performance evaluation using randomly generated PTGs 113

5.4 Case Study: Traction Controller . 116
5.5 Summary . 118

6 PTG Scheduling on Shared-Bus Based Heterogeneous Platforms 121
6.1 System Model . 121
6.2 Earliest/Latest Start Times for PTG Nodes 124
6.3 ILP Formulation: ILP with Explicit Time Reduced (ILP-ETR) 127

6.3.1 Unique Start Time Constraints 127
6.3.2 Linearization of Non-linear Term 128
6.3.3 Resource Constraints . 128
6.3.4 Dependency Constraints . 128
6.3.5 Deadline Constraint: . 129
6.3.6 Objective Function . 130
6.3.7 Complexity Analysis . 130

6.4 ILP Formulation: ILP with Non-overlapping Constraints (ILP-NC) . . . 131
6.4.1 Unique Resource Assignment: . 132
6.4.2 Dependency Constraints: . 133
6.4.3 Non-overlapping Constraints: . 133

xvii

CONTENTS

6.4.4 Linearization of Non-linear Term 135
6.4.5 Deadline Constraint: . 135
6.4.6 Objective Function . 136
6.4.7 Complexity Analysis . 136

6.5 Heuristic: Contention Cognizant Task and Message Scheduler (CC-TMS) 137
6.5.1 Upward Rank . 138
6.5.2 Earliest Start and Finish Time 138
6.5.3 Co-scheduling Tasks and Messages 139
6.5.4 Complexity Analysis . 141
6.5.5 Example . 142

6.6 Experimental Evaluation . 143
6.7 Case Study: Traction Controller . 155
6.8 Summary . 158

7 Scheduling Multiple Independent PTG Applications on Shared-Bus
Platform 161
7.1 Models and Terminologies . 162
7.2 Earliest/Latest Start Times for PTG Nodes 167
7.3 ILP Formulation: ILP for Energy-aware Scheduling (ILP-ES) 170

7.3.1 Unique Start Time Constraints 170
7.3.2 Resource Constraints . 171
7.3.3 Dependency Constraints . 172
7.3.4 Deadline Constraint . 173
7.3.5 Objective Function . 173

7.4 Proposed Scheme . 174
7.4.1 Task Priority Generator (TPG) 175
7.4.2 Task and Message Co-scheduler (TMC) 177
7.4.3 Complexity Analysis of Task and Message Co-scheduler (TMC) . 180
7.4.4 Slack Aware Frequency Level Allocator (SAFLA) 182

7.5 Experimental Evaluation . 187
7.6 Case Study . 196
7.7 Summary . 200

xviii

CONTENTS

8 Conclusion and Future Work 201
8.1 Discussion and Summarization . 201
8.2 Future Works . 206
8.3 Disseminations out of this Work . 210

References 213

xix

CONTENTS

xx

List of Figures

1.1 Taxonomy; Highlighted boxes represent scope of the thesis 3

2.1 Typical parameters of a real-time task 20
2.2 Fully connected multiprocessor system 24
2.3 Shared bus-based multiprocessor system 24
2.4 A Precedence-constrained Task Graph (PTG) 26
2.5 Gantt chart: Independent tasks (Table 2.1); Homogeneous processors . . 31
2.6 Gantt chart: Independent tasks (Table 2.1) with associated messages (Ta-

ble 2.2); Homogeneous processors . 32
2.7 PTG with task and message nodes . 33
2.8 Gantt chart: PTG (Figure 2.7) with tasks (Table 2.1) and message (Ta-

ble 2.3) nodes; Homogeneous processors 34
2.9 Gantt chart: PTG (Figure 2.7) with tasks (Table 2.4) and message (Ta-

ble 2.3) nodes; Heterogeneous processors 35
2.10 Gantt chart: PTG (Figure 2.7) with tasks (Table 2.5) and message (Ta-

ble 2.3) nodes; Heterogeneous processors; Fully-connected 36
2.11 Gantt chart: PTG (Figure 2.7) with tasks (Table 2.5) and message (Ta-

ble 2.3) nodes; Heterogeneous processors; Shared bus 37
2.12 (a) PTG G1, Deadline D1 = 14; (b) PTG G2, Deadline D2 = 7 38
2.13 Gantt chart: Multiple PTGs (Figure 2.12; Tables 2.6 & 2.7); Heteroge-

neous processors; Shared bus . 39

xxi

LIST OF FIGURES

3.1 Pipelined message transmission and execution over a synchronized system
of homogeneous processors and buses . 49

3.2 Partitioning and Scheduling of Tasks using DP-Fair 57
3.3 Partitioning and Scheduling of Messages using DP-Fair 58
3.4 Processor Utilization (PU) Vs. NR . 61
3.5 Bus Utilization (BU) Vs. NR . 61
3.6 ALOLA: Processor Utilization (PU) Vs. Running Time 63
3.7 ALOLA: Bus Utilization (BU) Vs. Running Time 63

4.1 Fully connected multiprocessor system 70
4.2 Example of a PTG G . 72
4.3 ILP-SATC: Schedule for G (in Figure 4.2) depicted as a gantt chart . . . 77
4.4 ILP-SANC: Schedule for G (in Figure 4.2) depicted as a gantt chart . . . 82
4.5 (a) Gaussian Elimination [1], (b) Epigenomics [2] 83
4.6 Effect of varying processors. 84
4.7 Effect of varying CCR . 85
4.8 Comparison with Predict Earliest Finish Time (PEFT) [1] 86
4.9 Adaptive Cruise Controller (ACC) application’s (a) Block Diagram [3],

(b) PTG representation . 88
4.10 Gantt chart representation of the schedule for the PTG (in Figure 4.9b) . 89

5.1 Fully connected multiprocessor system 92
5.2 Example of a PTG G . 94
5.3 Assignment PTG G′ obtained from PTG G and the PEFT schedule . . . 98
5.4 G-SAQA: Gantt chart representation of the schedule for G 98
5.5 The Total Slack Aware Quality-level Allocator (T-SAQA) schedule for G

as a gantt chart . 103
5.6 (a) Gaussian Elimination [1], (b) Epigenomics [2] (c) Laplace [4] 103
5.7 Running time comparison of Global Slack Aware Quality-level Allocator

(G-SAQA) and T-SAQA . 107
5.8 Effect of varying processors . 108
5.9 Effect of varying CCR . 110
5.10 Effect of varying number of tasks . 111
5.11 Effect of varying #tasks, #processors and heterogeneity 114

xxii

LIST OF FIGURES

5.12 Traction Control application’s (a) Block Diagram [5], (b) PTG represen-
tation . 116

5.13 The ILP-SANC schedule for G (Figure 5.12b) as a gantt chart; Reward
= 1148 . 117

5.14 The G-SAQA schedule for G (Figure 5.12b) as a gantt chart; Reward =
800 . 117

5.15 The T-SAQA schedule for G (Figure 5.12b) as a gantt chart; Reward =
1035 . 118

6.1 Platform Model ρ . 122
6.2 (a) Example of a PTG G and (b) Model of Platform ρ 124
6.3 The schedule for the PTG (Figure 6.2a) using ILP-ETR 131
6.4 The schedule for the PTG (Figure 6.2a) using ILP-NC 137
6.5 The schedule for the PTG (Figure 6.2a) using CC-TMS 142
6.6 (a) Gaussian Elimination [6], (b) Epigenomics [2] (c) Laplace [4] (d) Sten-

cil [4] . 143
6.7 Effect of varying processors . 148
6.8 Effect of varying buses . 149
6.9 Effect of varying Communication to Computation Ratio (CCR) 150
6.10 Speedup of CC-TMS compared to ILP-NC 151
6.11 Comparison among CC-TMS, Heterogeneous Earliest Finish Time (HEFT)

and PEFT . 153
6.12 Scalability of CC-TMS (running time in ms) 155
6.13 Traction Control application’s (a) Block Diagram [5], (b) PTG represen-

tation . 156
6.14 The schedule for the PTG (Figure 6.13b) using ILP-NC 157
6.15 The schedule for the PTG (Figure 6.13b) using CC-TMS 157

7.1 Platform Model . 162
7.2 Example of PTGs; (a) PTG G1, Period D1 = 20; (b) PTG G2, Period

D2 = 10 . 164
7.3 Example (TMC): Gantt chart representation of the schedule 182
7.4 Example (Slack Aware Frequency Level Allocator (SAFLA)): The sched-

ule as a gantt chart . 187

xxiii

LIST OF FIGURES

7.5 (a) Gaussian Elimination (GE) [6], (b) Epigenomics [2] (c) Laplace [4] (d)
Stencil [4] . 188

7.6 Variation in #processors . 191
7.7 Variation in #buses . 192
7.8 Effect of variation in CCR . 193
7.9 Variation in the number of PTGs . 195
7.10 Block diagram: (a) Electric Power Steering (EPS), (b) Adaptive Cruise

Controller (ACC), (c) Traction Controller (TC) 197
7.11 PTG representation: (a) Electric Power Steering (EPS), (b) Adaptive

Cruise Controller (ACC), (c) Traction Controller (TC) 198
7.12 Case study: Gantt chart representation of the schedule 199

8.1 (a) PTG with unicast, (b) PTG with multicast 208
8.2 Example of an ad hoc network; Here, P1, P2, P3, P4 are processors and

SW1, SW2 are switches . 209

xxiv

List of Algorithms

1 ALOLA . 54

2 G-SAQA . 97
3 T-SAQA . 102

4 CC-TMS . 140

5 TPG . 177
6 TMC . 179
7 SAFLA . 185

xxv

LIST OF ALGORITHMS

xxvi

List of Tables

2.1 Execution times of tasks on homogeneous processors 30
2.2 Transmission times of input and output messages 32
2.3 Transmission times of message nodes in the PTG shown in Figure 2.7 . . 33
2.4 Execution times of tasks on two heterogeneous processors 35
2.5 Execution times of tasks on three heterogeneous processors 36
2.6 Execution times of task nodes in PTGs G1 and G2 38
2.7 Transmission times of message nodes in PTGs G1 and G2 39
2.8 Summary of related works . 44

3.1 Tasks parameters . 55
3.2 QoS (NR) of MMCKP-DP and Accurate Low Overhead Level Allocator

(ALOLA) for varying Processor Utilization (PU) and #Processors 61
3.3 QoS (NR) of MMCKP-DP and ALOLA for varying Bus Utilization (BU)

and #Buses . 61
3.4 Speedup of ALOLA with respect to MMCKP-DP 63
3.5 Task set of Flight Management System (FMS) [7] 65

4.1 Values of tasks in Figure 4.2 . 72
4.2 As Soon As Possible (ASAP) & As Late As Possible (ALAP) times of

nodes in G (Figure 4.2) . 74
4.3 Complexity of ILP-SATC . 77
4.4 Complexity of ILP-SANC . 82

xxvii

LIST OF TABLES

4.5 Running time of ILP-SATC and ILP-SANC. The symbol @ represents
running times greater than 24 hours . 86

4.6 Computation time (in ms) of task nodes 88

5.1 Values of tasks in Figure 5.2 . 94
5.2 PEFT schedule of the PTG in Figure 5.2 98
5.3 Comparing run-times of ILP-SANC, G-SAQA and T-SAQA 106
5.4 Distribution for deviation in performance (w.r.t. ILP-SANC) G-SAQA

and T-SAQA . 109
5.5 Comparison of ILP-SANC, G-SAQA and T-SAQA with PEFT [1] 112
5.6 Computation time (in ms) of task nodes in Traction Control PTG 117

6.1 Execution time Matrix ET of task nodes 124
6.2 Communication time Matrix CT of message nodes 124
6.3 ASAP & ALAP times of nodes in G (Figure 6.2a) 126
6.4 Complexity of ILP-ETR . 131
6.5 Complexity of ILP-NC . 136
6.6 Upward rank of nodes in PTG G (Figure 6.2) 141
6.7 Running time of ILP-ETR and ILP-NC. The symbol @ represents run-

times greater than 24 hours . 147
6.8 Running Time Comparison (Speedup of CC-TMS compared to ILP-NC) 152
6.9 Execution times of task nodes (in µs) . 156
6.10 Transmission times of message nodes (in µs) 157

7.1 Sample voltage (volt) / frequency (GHz) pairs [8] 163
7.2 Execution times of tasks at processors’ maximum voltage/frequency . . . 165
7.3 Communication times of message nodes 165
7.4 ASAP and ALAP times of task nodes in PTGs G1 and G2 (Figure 7.2,

Table 7.2 & Table 7.3) . 169
7.5 ASAP and ALAP times of message nodes in PTGs G1 and G2 (shown in

Figure 7.2, Table 7.2 & Table 7.3) . 169
7.6 Complexity of ILP . 174
7.7 Normalized running time (in microseconds) 196
7.8 Execution and communication times: Electric Power Steering (EPS) . . . 197

xxviii

LIST OF TABLES

7.9 Execution and communication times: Adaptive Cruise Controller (ACC) 198
7.10 Execution and communication times: Traction Controller (TC) 199

xxix

xxx

List of Acronyms

ABS Anti-lock Braking System

ACC Adaptive Cruise Controller

ADAS Advanced Driver Assistance System

ALAP As Late As Possible

ALOLA Accurate Low Overhead Level Allocator

ASAP As Soon As Possible

BSAMS Baseline Slack Aware Multi-PTG Scheduler

BF Boundary Fair

CCR Communication to Computation Ratio

CC-TMS Contention Cognizant Task and Message Scheduler

CPOP Critical Path On a Processor

CPS Cyber-Physical System

CPSs Cyber-Physical Systems

CSP Constraint Satisfaction Problem

DAG Directed Acyclic Graph

xxxi

DECM Downward Energy Consumption Minimization

DP Dynamic Programming

DP-Fair Deadline Partitioning Fair

DUECM Downward and Upward Energy Consumption Minimization

DVFS Dynamic Voltage and Frequency Scaling

EDF Earliest Deadline First

EFT Earliest Finish Time

EPS Electric Power Steering

ERfair Early-Release fair

EST Earliest Start Time

FMS Flight Management System

G-SAQA Global Slack Aware Quality-level Allocator

HEFT Heterogeneous Earliest Finish Time

HLF Highest Level First

HSV Heterogeneous Selection Value

ILP Integer Linear Programming

ILP-ES ILP for Energy-aware Scheduling

ILP-ETR ILP with Explicit Time Reduced

ILP-NC ILP with Non-overlapping Constraints

ILP-SANC ILP - Service-level Allocation with Non-overlapping Constraints

ILP-SATC ILP - Service-level Allocation with Timed Constraints

LCM Least Common Multiple

xxxii

LHS left hand side

LLREF Largest Local Remaining Execution time First

MCP Modified Critical Path

MILP Mixed-Integer Linear Programming

MMCKP Multi-dimensional Multiple-Choice Knapsack formulation

MWSTR Multiple-Workflows-Slack-Time-Reclaiming

PEFT Predict Earliest Finish Time

Pfair Proportional fair

PTG Precedence-constrained Task Graph

PTGs Precedence-constrained Task Graphs

QoS Quality of Service

RHS right hand side

RM Rate-Monotonic

RT-CPS Real-Time Cyber-Physical System

RT-CPSs Real-Time Cyber-Physical Systems

RUN Reduction to UNiprocessor

SAFLA Slack Aware Frequency Level Allocator

SMT Satisfiability Modulo Theories

TC Traction Controller

TPG Task Priority Generator

T-SAQA Total Slack Aware Quality-level Allocator

TMC Task and Message Co-scheduler

xxxiii

xxxiv

List of Symbols

Ti ith task

Mi ith message

Ai Arrival time of task Ti

Si Start time of task Ti/message Mi

Fi Finish time of task Ti/message Mi

Di Deadline of task Ti

ei Execution time of task Ti

πi Period of task Ti

n Number of task nodes

m Number of message nodes

slil lth service-level of task Ti

SLi SLi = {sli1, sli2, . . . , sli|SLi|}; Set of service-levels of task Ti

mxij Input message of task Ti at service-level slij

myij Output message of task Ti at service-level slij

wtij Computation demand of task Ti at service-level slij

xxxv

wmij Communication demand of task Ti at service-level slij

p Number of processors

b Number of buses

P P = {P1, P2, . . . , Pp}; Set of processors

Pr rth processor

B B = {B1, B2, . . . , Bb}; Set of buses

Br rth bus

G A Directed Acyclic Graph (DAG)/Precedence-constrained Task Graph (PTG)

T T = {T1, T2, . . . , Tn}; Set of tasks

V Set of nodes in a PTG

E Set of edges in a PTG

Vi ith node of a PTG

Tsource Source task node of a PTG

Tsink Sink task node of a PTG

mij Message from task Ti to task Tj

eir Execution time of task Ti on processor Pr

eilr Execution time of task Ti at service-level slil on processor Pr

ckr Communication time of message Mk on bus Br

N Number of PTGs

G G = {G1, G2, . . . , GN}; Set of PTGs

Gg gth PTG

Vg Set of nodes in PTG Gg

xxxvi

Eg Set of edges in PTG Gg

V
g
i ith node in PTG Gg

ng Number of task nodes in PTG Gg

mg Number of message nodes in PTG Gg

T g T g = {T g1 , T g2 , . . . , T gng}; Set of task nodes in PTG Gg

M g M g = {M g
1 ,M

g
2 , . . . ,M

g
mg}; Set of message nodes in PTG Gg

T gi ith task node in PTG Gg

M g
k kth message node in PTG Gg

indeg(Vi) In degree of node Vi

outdeg(Vi) Out degree of node Vi

pred(Vi) Predecessor nodes of Vi

succ(Vi) Successor nodes of Vi

R R = {R1, R2, . . . , Rr}; Set of resources

Rr rth resource

Lr Lr = {1, 2, . . . , |Lr|}; Set of voltage/frequency levels of processor Pr

V Voltage

Vrl Voltage of processor Pr at voltage/frequency level l

frl Frequency of processor Pr at voltage/frequency level l

egirl Execution time of task T gi on processor Pr at voltage/frequency level l

cgkr Communication time of message M g
k on bus Br

Dg Deadline of PTG Gg

H H is the hyperperiod

xxxvii

Ig Number of iterations/instances of Gg within the hyperperiod H

Ggq qth instance of Gg within the hyperperiod H

Vgq Set of nodes in Ggq

Egq Set of edges in Ggq

V
gq
i ith node in Ggq

T gqi ith task node in Ggq

M gq
k kth message node in Ggq

xxxviii

Chapter 1
Introduction

Today, Cyber-Physical Systems (CPSs) are becoming an important part of our daily lives.
A CPS is composed of physical sub-systems together with computing and networking
(cyber sub-systems), where embedded computers and networks monitor and control the
physical processes. For example in a traditional aircraft, a pilot controls the aircraft using
movable surfaces on the wings and tail, connected to the cockpit through mechanical
and hydraulic sub-systems. On the other hand in a fly-by-wire aircraft, the control
commands are electronically sent by a flight computer over a network to actuators at
the wings and tail, making the aircraft much lighter than a traditional aircraft, resulting
in better fuel efficiency.

Many CPSs in domains such as automotive, avionics, smart grids, nuclear plants, in-
dustrial process control, etc., often consist of multiple control sub-systems running on dis-
tributed processing platforms. For example, an automotive system consists of several dis-
tributed sub-systems like Adaptive Cruise Controller (ACC), Traction Controller (TC),
Anti-lock Braking System (ABS), Advanced Driver Assistance System (ADAS), etc.
Most of these control systems are modeled as real-time independent tasks or Precedence-
constrained Task Graphs (PTGs), depending on the nature of interactions between their
functional components. In order to meet specifications related to timing, reliability, en-
ergy, etc., while keeping the design methodology simple, each of these sub-systems often
execute on its own dedicated processing units, making the overall system architecture
federated in nature. Such federated architectures may result in higher design costs com-

1

1. INTRODUCTION

pared to more integrated execution of applications on smaller consolidated platforms.
However, consolidated architectures lead to significantly increased design complexity due
to a higher degree of contention for shared resources (such as processing elements, buses,
memories, etc). On a different trajectory, continuous demands for higher performance
and reliability within stringent resource budgets is driving a shift from homogeneous to
heterogeneous processing platforms for the implementation of today’s CPSs. Given a
distributed platform consisting of a set of processing elements connected through com-
munication channels, the successful execution of tasks and transmission of messages
(while satisfying deadlines and other resource constraints), is essentially a real-time
task-message co-scheduling problem.

The problem of scheduling real-time tasks on processors is being studied by re-
searchers for many decades. A scheduler allocates resources to the tasks and decides
their execution sequence taking schedulability constraints into consideration. Real-time
task sets can be of different types, (i) Independent task set: Here, a task is not interre-
lated to any other tasks in the set through precedence constraints i.e. execution of the
task does not depend on the data received from one or more other tasks, (ii) Depen-
dent task set: Here, completion of execution of a task may be dependent on messages
received from one or more other tasks in the set. To schedule a set of independent tasks,
a scheduler needs to satisfy deadline and resource constraints. On the other hand to
schedule a set of dependent tasks (represented as a PTG), a scheduler additionally needs
to satisfy the precedence constraints among tasks. A distributed platform may consist
of multiple homogeneous or heterogeneous processors which are either fully connected
or connected through shared buses. Depending on processor types, a task may require
same or distinct execution times on different processors. So, in addition to determin-
ing start/finish times of tasks, a scheduler also needs to find out the task-to-processor
mappings while generating a schedule for tasks executing on a heterogeneous distributed
platform. This dissertation focuses towards co-scheduling strategies for real-time CPSs,
where functionalities may be represented as independent tasks, PTGs or even multiple
independent applications each represented as a separate PTG. The targeted platforms

2

may consist of homogeneous/heterogeneous processing elements, which may either be
fully interconnected or connected through shared possibly heterogeneous buses. We have
added a taxonomy in Figure 1.1 and the highlighted boxes represent scope of this thesis.

Scheduling

Task Model System Model Scheduler Types

Independent
Task Set

Dependent
Task Set

Uniprocessor
Systems

Multiprocessor
Systems

Static
Scheduler

Dynamic
Scheduler

Homogeneous
Multiprocessors;
Fully Connected

Homogeneous
Multiprocessors;

Shared Bus based

Heterogeneous
Multiprocessors;
Fully Connected

Heterogeneous
Multiprocessors;

Shared Bus based

Optimal Scheduler

Heuristic Scheduler

Figure 1.1: Taxonomy; Highlighted boxes represent scope of the thesis

Solution approaches to real-time scheduling problems can be broadly classified as
heuristic and optimal. Heuristic schedule construction methodologies are typically based
on the satisfaction of a set of sufficiency conditions and cannot take into consideration all
necessary schedulability requirements. Consequently, such scheduling schemes become
sub-optimal in nature with their results often deviating significantly from their optimal
counterparts. On the other hand, optimal solution approaches take all necessary and
sufficient conditions into consideration and have the potential to make a fundamental
difference in time-critical systems with respect to performance, reliability, and other
non-functional metrics like cost, power, space, etc. Optimal schedules can also act
as benchmarks allowing accurate comparison and evaluation of heuristic solutions [9].
Several strategies including automata based synthesis, Constraint Satisfaction Problem
(CSP)/Satisfiability Modulo Theories (SMT) based modeling, search based technique,

3

1. INTRODUCTION

ILP, etc. have been typically used to construct optimal schedulers for CPSs. This
thesis has focused towards the synthesis of optimal scheduler using a state-space search
approach or CSP based modeling followed by solution generation using CPLEX [10] a
standard industry grade constraint solver.

Though, the optimal scheduling solutions may potentially deliver significantly better
performance compared to sub-optimal heuristic solutions, finding optimal solutions may
become prohibitively expensive for large problem sizes. Further, during design space
exploration, multiple quick design iterations are needed and/or powerful server systems
may not be available at the designer’s disposal. In such cases the designer must resort to
sub-optimal, yet satisfactorily good polynomial time heuristic solution for the problem
at hand. Many heuristic schedulers which are commonly based on variations of the well
known list scheduling strategy [1, 6, 11–13] are found in literature, particularly for CPS
applications represented as task graphs.

This dissertation presents a few novel real-time optimal/heuristic offline task-message
co-scheduling strategies for safety-critical CPSs consisting of various types of task and
execution platform scenarios. In real-time safety-critical CPSs, where deadline misses
may lead to catastrophic consequences, offline scheduling is often preferred as all timing
requirements can be guaranteed before putting the system in operation, specially in
cases where the task systems are persistent and do not vary dynamically at run time.
Additionally, offline scheduling allows time and space complexities involved in solution
space exploration to become independent of run-time scheduling overheads.

1.1 Related Work

Traditionally, scheduling of real-time independent tasks on multiprocessor systems has
been based on either partitioned or global approaches [14–16]. With partitioning, the
multiprocessor scheduling problem is transformed into uniprocessor scheduling prob-
lem, where a task is assigned to a designated processor and gets executed entirely on
that processor. Well known optimal uniprocessor scheduling algorithms include Rate-
Monotonic (RM) (static priority) and Earliest Deadline First (EDF) (dynamic priority),

4

1.1 Related Work

proposed by Liu and Layland [17]. However, a major drawback of partitioning is that, up
to half of the system capacity may remain unutilized in order to ensure timing constraints
of a given task set [18]. Unlike the fully partitioned approaches, more global schedulers
like Proportional fair (Pfair) [19], PD2 [20], Early-Release fair (ERfair) [21], Boundary
Fair (BF) [22], SA [23], Largest Local Remaining Execution time First (LLREF) [24],
Reduction to UNiprocessor (RUN) [25], Deadline Partitioning Fair (DP-Fair) [26] can
achieve very high utilization of the system capacity by allowing migrations of tasks
among processors. The Pfair scheduler proposed by Baruah et al. [19] is known to
be the first optimal global real-time scheduler on multiprocessor systems for tasks with
implicit deadlines. Based on Pfair, Anderson et al. [21] proposed a work-conserving mul-
tiprocessor scheduling algorithm called the ERfair scheduler. However both the above
schemes attempt to maintain proportional fairness at each time slot and incur unre-
stricted preemption/migration overheads due to this. Recently, Levin et al. [26] proposed
a semi-partitioned approximate proportional fair optimal scheduler called DP-Fair with
much lower and bounded context switching overheads.

The problem of scheduling PTGs on multiprocessor systems has also received the at-
tention of researchers over many decades. Various optimal solution approaches, such as
linear programming, Best-first search, and other exhaustive enumeration techniques in-
cluding model-based formal synthesis mechanisms, have been proposed [27,28]. Prasanna
et al. [29] devised a control-theoretic optimal scheduling mechanism for task graphs exe-
cuting on a homogeneous multiprocessor system. Later, they have extended their scheme
to include communication overheads between task nodes [30]. Sarad et al. [9] developed
a Mixed-Integer Linear Programming (MILP) based PTG scheduling strategy for plat-
forms consisting of a set of fully connected homogeneous processing nodes. Liu et al. [31]
considered the problem of task node assignment for PTGs, among heterogeneous clusters
connected through communication links of various transmission capacities. Kanemitsu
et al. [32] presented an ILP based optimal task scheduling scheme for fully-connected
heterogeneous distributed systems. Hsiu et al. [33] developed an optimal and approx-
imation algorithm for the scheduling of PTGs on heterogeneous distributed platforms

5

1. INTRODUCTION

with shared buses. However, a drawback of this scheme is the simplistic assumption
that mapping of task nodes to processing elements are known a priori.

Although optimal scheduling solutions may potentially deliver significantly better
performance, it may be noted that computation of such optimal solutions may often
become prohibitively expensive for large problem sizes. Therefore, research in this do-
main has also focused towards the design of low-overhead heuristics that provide quick
and satisfactory schedules. Heuristic scheduling of PTGs on multiprocessor platforms
have often been dealt with list scheduling based techniques. These scheduling strategies
typically maintain an ordered priority list of all tasks in the PTG [1, 6, 11–13] and in-
volves two phases, (i) task prioritization: for selecting the highest-priority ready task and
(ii) processor selection: for selecting a suitable processor that minimizes execution time.
Some examples of this class of techniques include the Modified Critical Path (MCP) [34],
Highest Level First (HLF) [35], Critical Path On a Processor (CPOP) [6], HEFT [6],
PEFT [1] and Heterogeneous Selection Value (HSV) [11] algorithms. They attempt to
construct a static-schedule for the given PTG to minimize the overall schedule length
while satisfying resource and precedence constraints.

1.2 Challenges

Developing efficient scheduling strategies for diverse real-time applications in today’s
safety-critical CPSs must meet several challenges. We now enumerate a few such impor-
tant challenges and discuss them [27].

1. Timing requirements:
Real-time systems are characterized by their operations not only being logically
correct, but also on the time at which they are performed. The time before which
a task should complete its execution for the safety of the system, is called its
deadline. Scheduling schemes for safety-critical real-time systems must be able to
guarantee the timing requirements (i.e., deadlines) associated with various types of
tasks that co-exist in the system.

2. Resource constraints:

6

1.3 Objectives

Safety-critical systems are implemented on platforms consisting of a limited num-
ber of resources. Providing a lot of redundant hardware is not always possi-
ble/feasible as the system’s cost increases, and the system’s performance may
degrade in terms of power/energy dissipation, etc. For example, in cost-sensitive
safety-critical systems like cars, a cost differential of even a hundred dollars can
make a commercial difference [36–39]. In addition, over the years, the nature
of the processing elements used in real-time systems is transformed from unipro-
cessor to homogeneous multiprocessor platforms to heterogeneous multiprocessor
platforms to cater to higher computation demands while adhering to restrictions on
power/energy dissipation. Scheduling schemes for safety-critical real-time systems
must be able to effectively utilize available resources of the underlying platform to
satisfy the resource constraints associated with the real-time task set.

3. Energy minimization:
Energy consumption in real-time systems has become an important issue with the
increase in the number of processing elements. Effective energy management is
important for battery-powered embedded systems, such as those deployed in au-
tonomous mobile robots, wearable devices, industrial controllers, etc. Recharging
or replacing batteries in such systems is not always practical or feasible. Hence,
effective energy management can enhance the lifetime of the batteries resulting in
higher performance and financial advantages. Even for systems directly connected
to the power grid, reducing energy consumption provides significant monetary and
environmental gains [40]. Scheduling schemes for real-time systems must optimize
the energy consumption satisfying other constraints like timing, resource, prece-
dence, etc.

1.3 Objectives

The principal aim of this dissertation has been to investigate the theoretical and practi-
cal aspects of co-scheduling strategies in safety-critical CPSs, keeping in view the chal-
lenges/hurdles discussed in the previous section. In particular, the objectives of this

7

1. INTRODUCTION

work may be summarized as follows:

1. Development of co-scheduling strategies for a set of independent periodic tasks
executing on a bus-based homogeneous multiprocessor system, with the objective
of maximizing system level QoS.

2. Design and implementation of QoS adaptive scheduling mechanisms for real-time
systems modeled as PTGs, on fully-connected heterogeneous multiprocessor sys-
tem.

3. Development of co-scheduling strategies for PTGs executing on a shared-bus based
heterogeneous distributed platform.

4. Design of energy-aware processor-bus co-scheduling strategy for the heterogeneous
distributed CPS platforms, as mentioned above.

1.4 Summary of work done

As part of this Ph.D research work, we have developed multiple scheduler design schemes
for real-time CPSs. The entire thesis work is composed of multiple contributions cat-
egorized into four phases, each of which is targeted towards a distinct task/platform
scenario.

1. Task Scheduling on Homogeneous Distributed Systems
CPSs, including those in the automotive domain, are often designed by assigning
to each task an appropriate criticality-based reward value that is acquired by the
system on its successful execution. Additionally, each task may have multiple
implementations designated as service-levels, with higher service-levels producing
more accurate results and contributing to higher rewards for the system.

This work proposes co-scheduling strategies for a set of independent periodic tasks
executing on a bus-based homogeneous multiprocessor system, with the objective
of maximizing system level QoS. Each service-level of any task has a distinct com-
putation demand (serviced by one or more processors) and communication demand

8

1.4 Summary of work done

(serviced by a set of shared buses) with higher service-levels having higher resource
demands. Successful execution of a task at a certain service-level is associated with
a reward corresponding to that service-level and this reward is proportional to the
task’s relative importance/criticality. The objective of the task allocation mecha-
nism is to maximize aggregate rewards such that both computation and commu-
nication resource demands of all tasks may be feasibly satisfied. The problem is
posed as a Multi-dimensional Multiple-Choice Knapsack formulation (MMCKP)
and present a Dynamic Programming (DP) solution (called MMCKP-DP) for the
same. Although DP delivers optimal solutions, it suffers from significantly high
overheads (in terms of running time and main memory consumption) which steeply
increase as the number of tasks, service-levels, processors and buses in the system
grows. Even for a system with a moderate task set consisting of 90 tasks, it takes
approximately 1 hour 20 minutes and consumes a huge amount of main mem-
ory space (approximately 68 GB). Such large time and space overheads are often
not affordable, especially when multiple quick design iterations are needed during
design space exploration and/or powerful server systems are not available at the
designer’s disposal.

Therefore, in addition to the optimal solution approach, we propose an efficient but
low-overhead heuristic strategy called ALOLA which consumes drastically lower
time and space complexities while generating good and acceptable solutions which
do not significantly deviate from the optimal solutions. ALOLA is a greedy but
balanced heuristic service-level allocation approach that proceeds level by level so
that a high aggregate QoS may be acquired by the system at much lower complexity
compared to the optimal MMCKP-DP strategy. The mechanism starts by storing
all tasks in a max-heap (based on a key costi) and assigning base service-levels to
all tasks. The algorithm then proceeds by repeatedly extracting the task at the
root of the heap, incrementing its service-level by 1, updating its cost value and
reheapifying it, until residual resources are completely exhausted, or all the tasks
have been assigned their maximum possible service-levels.

9

1. INTRODUCTION

Our simulation based experimental evaluation shows that even on moderately large
systems consisting of 90 tasks with 5 service-levels each, 16 processors and 4 buses,
while MMCKP-DP incurs a run-time of more than 1 hour 20 minutes and approx-
imately 68 GB main memory, ALOLA takes only about 196 µs (speedup of the
order of 106 times) and less than 1 MB of memory. Moreover, while being fast,
ALOLA is also efficient being able to control performance degradations to at most
13% compared to the optimal results produced by MMCKP-DP. Both the pre-
sented solution strategies (MMCKP-DP and ALOLA) assume DP-Fair [26], a well
known optimal multiprocessor scheduler, as the underlying scheduling mechanism.

2. PTG Scheduling on Heterogeneous Distributed Systems
Continuous demands for higher performance and reliability within stringent re-
source budgets is driving a shift from homogeneous to heterogeneous processing
platforms for the implementation of today’s CPSs. These CPSs are often dis-
tributed in nature and typically represented as PTGs due to the complex inter-
actions between their functional components. This work considers the problem of
scheduling a real-time system modeled as PTG, where tasks may have multiple
implementations designated as service-levels, with higher service-levels producing
more accurate results and contributing to higher rewards/QoS for the system. In
this work, we propose the design of ILP based optimal scheduling strategies as well
as low-overhead heuristic schemes for scheduling a real-time PTG executing on a
distributed platform consisting of a set of fully-connected heterogeneous processing
elements.

First, we develop an ILP based optimal solution strategy namely, ILP-SATC, which
follows an intuitive design flow and represents all specifications related to resource,
timing and dependency, through a systematic set of constraints. However, its
scalability is limited primarily due to the explicit manipulation of task mobilities
between their earliest and latest start times. In order to improve scalability, a
second strategy namely, ILP-SANC has been designed. ILP-SANC is based on the
non-overlapping approach [9] which sets constraints and variables in such a way

10

1.4 Summary of work done

that no two tasks executing on the same processor overlap in time. Further, in
ILP-SANC the total number of constraints required to compute a schedule for a
PTG becomes independent of the deadline of a given PTG, which helps to control
complexity of the proposed scheme. For example, given a PTG with seven tasks,
each having two service-levels and executes on a distributed system consisting of
2 heterogeneous processors, ILP-SATC generates 7834 constraints and takes ∼2
seconds to find the optimal schedule. On the other hand, ILP-SANC generates
only 203 constraints and takes 0.06 seconds to find the same solutions.

Though ILP-SANC shows appreciable improvements in terms of scalability over the
ILP-SATC, it still suffers from high computational overheads (in terms of running
time) as the number of nodes in a PTG and/or the number of resources, increase.
For example, given a PTG with ∼20 tasks, each having three service-levels and ex-
ecutes on a distributed system consisting of 8 heterogeneous processors, ILP-SANC
takes ∼4 hours to find the optimal schedule. It may be noted that such large time
overheads may often not be affordable, especially when multiple quick design it-
erations are needed during design space exploration. Therefore, two low-overhead
heuristics (i) G-SAQA and (ii) T-SAQA are proposed. Both G-SAQA and T-SAQA
internally make use of PEFT [1], a well known PTG scheduling algorithm on het-
erogeneous multiprocessor systems, to compute a baseline schedule which assumes
all task nodes to be at their base service-levels. Since PEFT attempts to minimize
schedule length, the resulting schedule length may be marked by unutilized slack
time before deadline.

The G-SAQA algorithm starts by using PEFT to compute task-to-processor map-
pings as well as start and finish times of tasks, based on task execution times
associated with their base service-levels. If length of the obtained PEFT sched-
ule violates deadline, then the algorithm terminates as generation of a feasi-
ble schedule is not possible. Otherwise, the available global slack (slackg =
Deadline−PEFT makespan) is used to enhance the tasks’ assigned service-levels
in an endeavour to maximize achievable reward while retaining task-to-processor

11

1. INTRODUCTION

mappings as provided by PEFT. The enhancement of task service-levels happen
in a service-level by service-level manner, starting with all tasks situated at their
base service-levels. At each step, the most eligible task is selected (from the task
set) for service-level upgradation by one. The selection of this task is based on
a prioritization key, which is the ratio between gain in rewards and increase in
execution time to upgrade service-level from current to the next one.

Though G-SAQA follows an intuitive design flow, it only considers global slack
(= Deadline− PEFT makespan) to upgrade service-levels of tasks in the PTG.
However, a closer look at the PEFT schedule reveals that there exists gap within
the scheduled nodes of the PTG which could be used along with the global slack to
achieve better performance in terms of service-levels and delivered rewards com-
pared to G-SAQA. It may also be possible to consolidate multiple small gaps
within the PEFT schedule into larger consolidated slacks, which may be used to
further improve performance in terms of achieved rewards. Therefore, the total
slack available with a task at any given time comprises of the global slack along
with the maximum consolidated inter-node gap between the task and its successor
on its assigned processor in the PEFT schedule. With the above insights on the
total task-level slacks available in a PTG, it proposes another heuristic namely,
T-SAQA with the objective of achieving better performance compared to G-SAQA.
The basic structure of T-SAQA is same as that of the G-SAQA algorithm except
the way it updates the start times of selected task node’s (selected for service-level
enhancement) descendants and slacks associated with the task nodes in the PTG.
In particular, G-SAQA uniformly delays the start times of all descendant nodes of
the selected task and reduces the global slack value by the same amount. In this
regard, it may be emphasized that T-SAQA works with distinct total slack values
associated with the task nodes in the PTG, instead of using a single global slack
pool. By harnessing the total slacks available with individual task nodes, T-SAQA
updates the start and finish times of only those descendant task nodes of the se-
lected task, whose start times are impacted due to the service-level upgradation

12

1.4 Summary of work done

of the selected task. Our simulation based experimental results show that both
the heuristic schemes (G-SAQA and T-SAQA) are about ∼106 times faster on an
average than the optimal strategy ILP-SANC, when number of tasks in the PTG
is ∼15, number of service-levels of each task is 3 and number of heterogeneous pro-
cessors in the system is 8. It also shows that both T-SAQA and G-SAQA returns
at most ∼30% and ∼45% less rewards than ILP-SANC, respectively. In all cases
T-SAQA outperforms G-SAQA in terms of rewards maximization while T-SAQA
has more running time than G-SAQA.

3. PTG Scheduling on Heterogeneous Distributed Shared Bus Systems
The PTG scheduling technique considered in the previous section assumed a fully
connected heterogeneous platform. Assumption of a fully connected platform helps
to avoid the problem of resource contention, as is the case when the system is as-
sumed to be associated with shared data transmission channels. However, it may
be appreciated that shared bus networks form a very commonly used communi-
cation architecture in CPSs [41, 42]. Therefore, this work extend the problem of
scheduling PTGs on fully-connected platforms, to CPS systems where the proces-
sors are connected through a limited number of bus based shared communication
channels. In this work, we propose the design of ILP based optimal scheduling
strategies as well as low-overhead heuristic schemes for the scheduling of real-time
PTGs executing on a distributed platform consisting of a set of heterogeneous pro-
cessing elements interconnected by heterogeneous shared buses.

We first develop an ILP based solution strategy namely, ILP-ETR to produce
optimal schedules for real-time PTGs executing on a distributed heterogeneous
platform. ILP-ETR follows a comprehensive design approach, which represents all
specifications related to resource, timing and dependency, through a systematic set
of constraints. Although ILP-ETR follows an intuitive design flow, its scalability
is limited primarily due to the explicit manipulation of task mobilities between
their earliest and latest start times. In order to improve its scalability, we pro-
pose an improved ILP formulation namely, ILP-NC based on the non-overlapping

13

1. INTRODUCTION

approach [9] which sets constraints and variables in such a way that no two tasks
executing on the same processor overlap in time. Experimental results show that
ILP-ETR takes ∼5 hours to compute the schedule of a PTG with ∼20 nodes ex-
ecuting on a system with 4 processor and 2 buses, and the deadline of the PTG
is set to its optimal makespan. On the other hand, ILP-NC takes only ∼12 secs
to compute schedule for the same. Again, ILP-ETR is unable to find optimal
solution within 24 hours when the deadline of the PTG is increased by 25% of
its optimal makespan. In this case, ILP-NC takes only ∼12 seconds to find the
optimal solution.

In addition to the two optimal ILP based approaches, we have designed a fast
and efficient heuristic strategy namely, CC-TMS for the problem at hand. The
CC-TMS is based on a list scheduling based heuristic approach to co-schedule
task and message nodes in a real-time PTG executing on a distributed system
consisting of a set of heterogeneous processors interconnected by heterogeneous
shared buses. The algorithm assigns priority to all nodes in the PTG according to
a parameter called, upward rank of each node. It then selects the highest priority
task node and computes the task’s Earliest Finish Time (EFT) values on each
processor while temporarily allocating parent message nodes to suitable buses.
The task is actually mapped on the processor where it has minimum EFT. Based
on this selected task-to-processor mapping the parent message nodes of the task
node are assigned to suitable buses. This process repeats until all task nodes are
scheduled on processors. To evaluate the performance of the CC-TMS with respect
to optimal solutions, we define a metric called Makespan Ratio as follows:

Makespan Ratio = Optimal Makespan

Heuristic Makespan
× 100 (1.1)

Extensive simulation based experimental results show that CC-TMS achieves 97%
and 58% (Makespan Ratio) in the best and worst case scenarios, respectively.

4. Energy-aware Scheduling for Systems Consisting of Multiple PTG Ap-
plications

14

1.4 Summary of work done

The works done in the second and third phases deal with the co-scheduling of a
single task graph on heterogeneous distributed platform. In the current phase, we
endeavour towards the design of heterogeneous processor-shared bus co-scheduling
strategies for a given set of independent periodic applications, each of which is
modelled as a PTG. In particular, we have developed an ILP based optimal and
heuristic strategy for the mentioned system model, whose objective is to minimize
system level dynamic energy dissipation. Obviously to achieve energy savings, the
processors in the system are assumed to be Dynamic Voltage and Frequency Scal-
ing (DVFS) enabled and thus, the operating frequencies of these processors can be
dynamically reconfigured to a discrete set of alternative voltage/frequency-levels
at run-time. However, the ILP based optimal scheme called ILP-ES is associated
with very high computational complexity and is not scalable even for small prob-
lem sizes. Therefore, we propose an efficient but low-overhead heuristic strategy
called SAFLA which consumes drastically lower time and space complexities while
generating good and acceptable solutions.

The SAFLA algorithm starts by using an efficient co-scheduling algorithm TMC
which actually extend the CC-TMS algorithm (discussed above) to schedule mul-
tiple periodic PTGs executing on a shared bus-based heterogeneous distributed
platform. This schedule is generated assuming all processor to be running at
their highest frequency for the entire duration of the schedule. SAFLA terminates
with failure, if the schedule returned by TMC violates deadline. Otherwise, the
available slack associated with each task node is used to enhance the tasks’ as-
signed voltage/frequency-levels in an endeavour to minimize energy dissipation,
while retaining task-to-processor/message-to-bus mappings as provided by TMC.
Experimental results show that SAFLA is an effective scheduling scheme and de-
livers handsome savings in terms of lower energy consumption in most practical
scenarios.

15

1. INTRODUCTION

1.5 Organization of the Thesis

The thesis is organized into eight chapters. A summary of the contents in each chapter
is as follows:

• Chapter 1: Introduction
This chapter is introductory, discussing the motivation of our work.

• Chapter 2: Background on Real-time Systems
This chapter presents a background on real-time systems and various co-scheduling
strategies of real-time tasks and messages on distributed multiprocessor platforms.
In particular, we try to present the vocabulary needed to understand the following
chapters.

• Chapter 3: QoS Aware Scheduling of Independent Task Sets on Homogeneous
Distributed Systems
In the third chapter, we propose strategies for co-scheduling a set of independent
periodic tasks with multiple service-levels, executing on a bus-based homogeneous
multiprocessor system. The problem is posed as a Multi-dimensional Multiple-
Choice Knapsack formulation (MMCKP) and present a Dynamic Programming
(DP) solution (called MMCKP-DP) for the same. Although DP delivers optimal
solutions, it suffers from significantly high overheads (in terms of running time
and main memory consumption), which steeply increase as the number of tasks,
service-levels, processors and buses in the system grows, and severely restricts the
scalability of the strategy. Therefore, in addition to the optimal solution approach
MMCKP-DP, we propose an efficient but low-overhead heuristic strategy called
ALOLA which not only consumes drastically lower time and space complexities
but also generate good and acceptable solutions, which do not significantly deviate
from the optimal solutions.

• Chapter 4: Optimal Scheduling of PTGs on Heterogeneous Distributed Systems
Research conducted in the fourth chapter deals with the optimal scheduling mech-

16

1.5 Organization of the Thesis

anism of a real-time system modeled as PTG executing on a fully connected dis-
tributed heterogeneous platform. Here, tasks may have multiple implementations
designated as service-levels, with higher service-levels producing more accurate re-
sults and contributing to higher rewards/QoS for the system. To solve the problem,
an ILP based optimal solution approach namely, ILP-SATC, is proposed. Though
the formulation of ILP-SATC follows an intuitive design flow, its scalability is lim-
ited primarily due to the explicit manipulation of task mobilities between their
earliest and latest start times. In order to improve scalability, a second ILP based
strategy namely, ILP-SANC, has been designed. Instead of explicitly relying on
task mobility based manipulations as ILP-SATC, ILP-SANC guarantees that the
executions of no two tasks in the system overlap in time on the same processor.
This modification in the design approach allows the constraint set in ILP-SANC
to be independent of the deadline of a given PTG.

• Chapter 5: Heuristic PTG Scheduling Strategies on Heterogeneous Distributed
Systems
Though ILP-SANC in (Chapter 4) shows appreciable improvements in terms of
scalability over the ILP-SATC, it still suffers from high computational overheads
(in terms of running time) as the number of nodes in a PTG and/or the number
of resources, increase. Therefore in the fifth chapter, two low-overhead heuristic
algorithms namely, G-SAQA and T-SAQA, are proposed for the same problem
as discussed in the previous (fourth) chapter. The base-line heuristic, G-SAQA,
is faster but returns moderately good solutions. T-SAQA extends G-SAQA and
deliver significantly better solution, albeit at the cost of slightly higher time com-
plexity.

• Chapter 6: PTG Scheduling on Shared-Bus Based Heterogeneous Platforms
In this chapter, we propose the design of ILP based optimal scheduling strategies
as well as low-overhead heuristic schemes for the co-scheduling of real-time PTGs
executing on a distributed platform, consisting of a set of heterogeneous processing
elements interconnected by heterogeneous shared buses. To solve the problem, two

17

1. INTRODUCTION

ILP based strategies namely, ILP-ETR and ILP-NC are proposed. Although, both
the approaches produce optimal solutions, ILP-NC suffers significantly lower com-
putational overheads compared to ILP-ETR. In addition to the optimal solution
approaches, we propose a fast but effective heuristic strategy called CC-TMS which
consumes much lower time and space complexities, while producing satisfactory
solutions.

• Chapter 7: Scheduling Multiple Independent PTG Applications on Shared-Bus
Platform
Chapter 7 deals with the energy-aware co-scheduling of multiple periodic PTGs ex-
ecuting on a distributed platform consisting of heterogeneous processing elements
and interconnected through a set of heterogeneous shared buses. An ILP based
optimal scheduling strategy namely, ILP-ES is proposed to minimize the over-
all system-level energy dissipation. Further, an efficient, low-overhead heuristic
strategy called SAFLA has been proposed for the problem at hand.

• Chapter 8: Conclusion and Future Work
The thesis concludes with this chapter. A comparative analysis on the algorithms
presented in the different contributory chapters has been carried out. We discuss
the possible extensions and future works that can be done in this area.

18

Chapter 2
Background and Related Work

This dissertation is oriented towards the design of real-time task-message co-scheduling
strategies for safety-critical CPSs. The previous chapter provided a background of the
overall problem domain and also highlighted several challenges imposed by diversity
in the nature of available computing/communication platforms, resource constraints,
timeliness, performance requirements, etc. that the developed solution strategies must
adhere to.

In this chapter, we present a brief background as well as state-of-the-art related to
different types of real-time systems followed by various real-time scheduling strategies
for CPSs. We first provide an overview on the structure of real-time systems. Then, the
evolution of scheduling algorithms for real-time systems implemented on homogeneous
and heterogeneous multiprocessor systems are discussed.

2.1 An Overview of Real-time Systems

Typically, real-time systems are composed of the Application Layer, Real-time Scheduler
and Hardware Platform [43].

• The Application Layer consists of all applications that should be executed.

• The Real-time Scheduler takes scheduling decisions and provides services to
the Application Layer.

19

2. BACKGROUND AND RELATED WORK

• The Hardware Platform consists of processors, memories, communication net-
works, etc. on which the applications are executed.

We will now present each of these layers in detail and introduce important theoret-
ical models for enabling the analysis of these systems and allow the design of efficient
scheduling strategies.

2.1.1 Application Layer

The application layer is composed of all the applications that the system needs to exe-
cute. Applications in real-time systems often consist of a set of recurrent tasks. Each
such task may represent a piece of code (i.e., program) which is triggered by external
events that may happen in their operating environment. Each execution instance of the
task is referred to as a job. We now discuss the set of definitions related to a real-time
task.

2.1.1.1 Real-time Task Model

ei

Ai Si Fi Di

Ti
t

Figure 2.1: Typical parameters of a real-time task

Formally, a real-time task (denoted by Ti; shown in Figure 2.1) can be characterized by
the following parameters:

1. Arrival time (Ai) is the time at which a task becomes ready for execution. It is
also referred as release time or request time of the task.

2. Start time (Si) is the time at which a task starts its execution.

3. Computation time or Execution time (ei) is the time taken by the processor to
finish computation of the task without interruption.

20

2.1 An Overview of Real-time Systems

4. Finishing time or Completion time (Fi) refers to the time at which a task finishes
its execution.

5. Deadline (Di) is the time before which a task should complete its execution
without causing any damage to the system. If a deadline is specified with respect
to the task arrival time, it is called a relative deadline, whereas if it is specified
with respect to time zero, it is called an absolute deadline.

6. Worst-case execution time is the largest computation time of a task among all
of its possible executions.

7. Laxity or Slack time (slacki) is the maximum amount of time by which execution
of a task can be delayed after its activation/arrival, to complete within its deadline
(slacki = Di − ei).

8. Priority is the importance given to a task in context of the schedule at hand.

9. Criticality is a parameter related to the consequences of missing a deadline (typ-
ically, it can be hard, firm, or soft).

A real-time task Ti can be classified as periodic, aperiodic or sporadic based on regularity
of its activations [14,27].

1. A Periodic task consists of jobs that arrive strictly periodically, separated by a
fixed time interval πi.

2. A Sporadic task consists of jobs that may arrive at any time once a minimum
interarrival time has elapsed since the arrival of the previous job of the same task.

3. An Aperiodic task consists of jobs where there is no regularity in the interarrival
times of consecutive jobs.

There are three levels of constraints with respect to the placement of deadlines relative
to the repetition periodicity of periodic and sporadic tasks.

1. Implicit Deadlines: All task deadlines are equal to their periods (Di = πi).

21

2. BACKGROUND AND RELATED WORK

2. Constrained Deadlines: All task deadlines are less than or equal to their periods
(Di ≤ πi).

3. Arbitrary Deadlines: Task deadlines may be less than, equal to, or greater than
their periods.

In this dissertation, we deal with periodic tasks having implicit deadlines. Now, we
provide a few other definitions related to tasks to be executed in a real-time system.

• Utilization: The utilization of an implicit deadline task Ti is given by Ui = ei/πi.
The total utilization of a task set T = {T1, T2, . . . , Tn} is defined as, U =

n∑
i=1

(ei/πi).

• Static and Dynamic Task System: In a static task system, the tasks that will
execute on the platform are completely defined before start of the system. In a
dynamic task system, tasks may join, leave or get modified during run-time. In
this thesis, we only deal with static task systems.

• Hyperperiod (H): Given a static task system, H represents the minimum time
interval after which the schedule repeats itself. For a set of periodic tasks, T =
{T1, T2, . . . , Tn} with periods {π1, π2, . . . , πn}, hyperperiod is given by the Least
Common Multiple (LCM) of the periods (H = LCM(π1, π2, . . . , πn)).

2.1.2 Real-time Scheduler

A real-time scheduler acts as an interface between applications and the hardware plat-
form. It schedules tasks using a real-time scheduling algorithm. The set of rules that,
at any time, determines the order in which tasks are executed is called a scheduling
algorithm. Given a set of tasks, T = {T1, T2, . . . Tn}, a schedule is an assignment of tasks
to the processors in the platform, so that each task may be executed until completion. A
schedule is said to be feasible if all tasks can be completed according to a set of specified
constraints. A set of tasks is said to be schedulable if there exists at least one algo-
rithm that can produce a feasible schedule. In a work-conserving scheduling algorithm,
processors are never kept idle while there exists a task waiting for execution.

22

2.1 An Overview of Real-time Systems

2.1.3 Hardware Platform

Based on the number of processors, a system can be classified into uniprocessor and
multiprocessors systems. A processor is a hardware element (digital circuit) that executes
programs or tasks.

1. Uniprocessor systems can execute only one task at a time and must switch
between tasks.

2. A Multiprocessor system may range from several separate uniprocessors tightly
coupled using high speed networks to multi-core. It can be classified as follows:

(a) Homogeneous: The processors are identical; hence the rate of execution of
all tasks is the same on all processors.

(b) Uniform: The processors are architecturally identical, but may execute at
different clock speeds (operation frequencies). Thus the rate of execution of
a task depends only on the speed of the processor. A processor running at
speed say, 2 GHz, will execute all tasks at exactly twice the rate of a processor
executing at speed 1 GHz.

(c) Heterogeneous: The processors are different; hence the rate of execution
of a task depends on both the processor and the task. That is, given a task
set, execution rates of a task on the different processors of the platform, are
completely unrelated to the execution values exhibited by other tasks. Indeed,
not all tasks may be able to execute on all processors.

In this dissertation, we have considered homogeneous/heterogeneous multiprocessor
systems where processors are either fully-connected or communicate through a shared
homogeneous/heterogeneous bus-based network.

1. Fully-connected multiprocessor system: In this system, each pair of pro-
cessors have dedicated communication channel to send/receive data or messages.
There is no contention for communication resources to transmit data among pro-
cessors. Figure 2.2 shows a typical fully-connected multiprocessor system where

23

2. BACKGROUND AND RELATED WORK

Processing
Element P1

Processing
Element P2

Processing
Element P3

Processing
Element P4

Figure 2.2: Fully connected multiprocessor system

Processing
Element P1

Processing
Element P2 · · · Processing

Element Pp

Bus B1

Bus B2

Bus Bb

· · · · · · · · ·

··
·

Figure 2.3: Shared bus-based multiprocessor system

all processors/processing elements are connected to each other through dedicated
links. For example, processing element P1 has separate communication channels
to processing elements P2, P3 and P4.

2. Shared bus-based multiprocessor system: In this system, processors are con-
nected through shared bus-based communication network. Here, processors can be
connected to all buses or a subset of buses. Further, buses can be homogeneous or
heterogeneous in nature. Figure 2.3 shows a shared bus-based multiprocessor sys-
tem. For example, processing element P1 is connected to all buses B1, B2, . . . , Bb.

We assume, each processor has its own private memory. For any given processor,
task execution and communication with other processors can be conducted simultane-
ously, without any contention. Specifically, we assume that tasks on different processors
communicate by transmitting data from the source processor via the underlying com-
munication network, to the local memory of the receiving processor. On the other hand,

24

2.2 Types of Task Constraints:

intra-processor communication is realized through the reading and writing of variables
stored in the local memory of the processor.

2.2 Types of Task Constraints:

Typical constraints that can be specified on real-time tasks are of three classes: timing
constraints, precedence relations, and constraints on shared resources.

1. Timing Constraints: Real-time systems are characterized by computational ac-
tivities with stringent timing constraints that must be met in order to achieve the
desired behavior. A typical timing constraint on a task is the deadline. Depending
on the consequences of a missed deadline, real-time tasks are usually distinguished
in three categories:

– Hard: A real-time task is said to be hard if missing its deadline may cause
catastrophic consequences on the system under control.

– Firm: A real-time task is said to be firm if missing its deadline does not
cause any damage to the system, but the output has no value.

– Soft: A real-time task is said to be soft if missing its deadline has still some
utility for the system, although causing a performance degradation.

2. Precedence Constraints: In certain applications, computational activities can-
not be executed in arbitrary order but have to respect some precedence relations de-
fined at the design stage. Such precedence relations are usually described through a
Directed Acyclic Graph (DAG)/Precedence-constrained Task Graph (PTG), where
tasks are represented by nodes and precedence relations by arrows. A PTG induces
a partial order on the task set.

– The notation Ti ≺ Tj specifies that task Ti (Tj) is an ancestor (a descendant)
of task Tj (Ti), meaning that the PTG contains a directed path from node Ti
to node Tj.

25

2. BACKGROUND AND RELATED WORK

T1

T3T2 T4

T5

T6

Figure 2.4: A Precedence-constrained Task Graph (PTG)

– The notation Ti → Tj specifies that task Ti (Tj) is a predecessor (successor)
of task Tj (Ti), meaning that the PTG contains an arc directed from node Ti
to node Tj.

Figure 2.4 illustrates a PTG that describes the precedence constraints among six
tasks. From the figure, it can be observed that task T1 do not have any predecessor
and can immediately start its execution. Tasks with no predecessors are called
source/start task nodes. It can also be seen that T2, T3 and T4 can start executing
only after the predecessor task node T1 completes its execution. Tasks with no
successors, as T6 in the above figure, are called sink task node. A PTG can have
multiple source or sink nodes.

3. Resource Constraints: The hardware platform in a real-time system consists of
a limited number of resources which are shared among multiple applications. So,
the resources must be used in a mutually exclusive way. For example, multiple
tasks can not execute on the same processor at a single time instant, i.e., a processor
can execute at most one task at a moment. Similarly, a bus can transmit only a
single message at any time instant.

26

2.3 Classification of Real-Time Scheduling Algorithms

2.3 Classification of Real-Time Scheduling Algorithms

Among the great variety of algorithms proposed for scheduling real-time tasks, the fol-
lowing main classes can be identified:

• Preemptive Vs. Non-preemptive.

– In preemptive algorithms, a running task can be interrupted at any time to
assign the processor to another active task, according to a predefined schedul-
ing policy. The unfinished portion of the interrupted task may be re-allocated
to the same processor or to a different processor [44].

– In non-preemptive algorithms, a task, once started, is executed by the pro-
cessor until completion. In this case, all scheduling decisions are taken as the
task terminates its execution.

• Static vs. Dynamic.

– Static algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before their activation.

– Dynamic algorithms are those in which scheduling decisions are based on
dynamic parameters that may change during system evolution.

• Off-line vs. Online.

– In off-line scheduling, the scheduler has a priori knowledge of the task set and
its constraints, such as arrival times, execution times, precedence constraints,
etc. The schedule is generated and stored at design time and dispatched
later during runtime of the system. Static schedulers are typically off-line in
nature.

– In online scheduling, algorithms make their scheduling decisions at runtime
based on information about the tasks that have arrived so far. Although they
are often flexible and adaptive, they may incur significant overheads because

27

2. BACKGROUND AND RELATED WORK

of runtime processing. However, they are a must in systems which do not
have enough information before run-time to execute the scheduler statically.

• Optimal vs. Heuristic.

– An algorithm is said to be optimal if it minimizes some given cost function
defined over the task set. When no cost function is defined and the only
concern is to achieve a feasible schedule, then an algorithm is said to be
optimal if it is able to find a feasible schedule, if one exists.

– An algorithm is said to be heuristic if it is guided by a heuristic function
in taking its scheduling decisions. A heuristic algorithm tends towards the
optimal schedule, but does not guarantee finding it.

2.4 A Discussion with Motivational Examples

This thesis deals with Real-Time Cyber-Physical System (RT-CPS) as its target do-
main. RT-CPS applications are usually dedicated towards controlling physical plants.
The applications execute persistently in infinite loops periodically acquiring data from
the plant/environment through sensors, processing the same, and then generating ap-
propriate actuation data. These control applications are often complex and executed on
high capacity compute servers at locations which may be geographically distant from
the plant. The sensors and actuators on the other hand, are in general co-located with
the plant. In this scenario, both the sensory and actuation data must be transmitted
as messages in a timely fashion over networks. The overall problem therefore involves
two distinct resource management issues — that of managing computation resources for
application execution and managing communication resources for message transmission.

Large systems such as today’s distributed manufacturing systems may constitute
multiple control sub-systems running on distributed processing platforms. Control ap-
plications in most of these sub-systems are modeled as real-time independent tasks or
PTGs, depending on the nature of interactions between their functional components.
These tasks often execute in a federated fashion on dedicated (separate) processing

28

2.4 A Discussion with Motivational Examples

units in order to keep the design methodology simple, while also meeting specifications
related to timing, reliability, energy, etc. However, it may be noted that such federated
execution generally leads to poor utilization of resource capacities due to lack of resource
sharing among tasks and/or messages. Poor resource utilization in turn, can result in
higher design costs as more resources must be deployed to synthesize a given system,
than is otherwise necessary. On the other hand, executing tasks on consolidated archi-
tectures can reduce design costs, although it can cause to significantly increased design
complexity due to a higher degree of contention for shared resources.

A scheduler allocates resources to the tasks and decides their execution sequence
(start times) taking schedulability constraints into consideration. To schedule a set
of independent tasks, a scheduler needs to satisfy deadline and resource constraints
along with precedence relationships associated with sensing and actuation messages.
On the other hand to schedule a set of dependent tasks (represented as a PTG), a
scheduler additionally needs to satisfy the precedence constraints among tasks. A sig-
nificant amount of work exist in the literature on scheduling of PTGs on distributed
systems [1, 6, 9, 11–13, 32]. Most of the existing schemes assume full interconnection
between the processing elements in the execution platform. Distributed processing sys-
tems formed by local area wireless networks such as ZigBee [45] are practical examples
of such execution platforms. Today, there is an increasing trend towards the execution
of real-time applications over such distributed local area networks in scenarios such as
an Industry 4.0 based smart manufacturing plant. The applications here are typically
complex interdependent work flows usually represented as PTGs. However, there is a
severe dearth of efficient resource allocation techniques for executing real-time PTGs on
the distributed platforms as mentioned above.

Although fully connected platforms find some practical use cases, there exist a vast
majority of distributed systems where the processing elements are not fully intercon-
nected by dedicated communication links. A shared bus-based automotive RT-CPS can
be considered as a typical example of such a distributed platform. It may be noted
that real-time scheduling techniques for this scenario must tackle contention for shared

29

2. BACKGROUND AND RELATED WORK

communication channels, in addition to simultaneously handling the contention of tasks
attempting to execute on a shared pool of processing elements.

Today, scheduling of tasks and messages in real-time distributed systems is usually
carried out in a federated manner in two steps. The first step among them is dedicated
to the allocation and scheduling of tasks on processing elements. Given the mapping and
execution order of tasks (obtained through the first step), the second step is dedicated
to the scheduling of messages between tasks while taking care that all schedulability
constraints are satisfied. This separation of concerns between task and message schedul-
ing allows the adaption of simpler design methodologies, and hence has been employed
as the usual practice. However, it may be noted that integrated scheduling of tasks
and messages have the potential to provide improved optimization, leading to possibly
higher resource usage efficiencies and lower deployment costs. With this motivation, this
thesis has attempted towards the design of task-message co-scheduling strategies for both
independent tasks as well as PTGs, on fully-connected and shared-bus based distributed
platforms.

Scheduling problems considered in this thesis are generally complex and NP-Hard
in nature. We will now consider a series of small test case scenarios of progressively
higher complexities and present important scheduling challenges that arrive for each of
them. First, let us consider a set of five independent tasks T1, T2, T3, T4 and T5 to be
executed on a homogeneous platform consisting of two processors P1 and P2. Table 2.1
shows execution times of these five tasks. All tasks have the same deadline of 14. Based

T1 T2 T3 T4 T5

2 1 2 4 1

Table 2.1: Execution times of tasks on homogeneous processors

on variations in task-to-processor allocation decisions, there can be multiple possible
schedules with different makespans. For example, Figures 2.5a and 2.5b show two work-
conserving1 schedules having makespans 6 (slack time 14 − 6 = 8) and 5 (slack time

1In a work-conserving scheduling algorithm, processors are never kept idle while there exists a task

30

2.4 A Discussion with Motivational Examples

14− 5 = 9) respectively, for the given task set.

T1 T2 T5P1

T3 T4P2
0 1 2 3 4 5 6

6

time
(ms)

(a) Schedule 1

T1 T3 T5P1

T2 T4P2
0 1 2 3 4 5

5

time
(ms)

(b) Schedule 2

Figure 2.5: Gantt chart: Independent tasks (Table 2.1); Homogeneous processors

We can observe from the above example that based on variations in task-to-processor
allocation decisions, there can be multiple schedules with different makespans. A sched-
ule with lower makespan is always beneficial as it allows higher slack times which may
be used to better optimize one or more performance metrics such as expenditure on
resources, energy, reliability, security, etc.

The first test case scenario does not consider message communication. Next, we con-
sider the case when each task takes a sensory input and produces an actuation output.
The sensed inputs are transmitted as messages over communication channels, to pro-
cessors where tasks get executed and the corresponding control outputs are computed.
The computed outputs in turn are communicated to actuators as messages via commu-
nication channels. Let us consider the same set of five independent tasks T1, T2, T3, T4

and T5 executing on a homogeneous distributed platform consisting of two processors
P1 and P2. Tables 2.1 and 2.2 show the tasks’ execution times and their corresponding
input/output messages. Here, M I

i and MO
i represent input and output messages of a

task Ti. For simplicity, we assume that the bandwidth of the communication channels
among processors in this example is of unit capacity. So, the communication time of
messages will become same as their sizes. Here also, all tasks have the same deadline 14.

Depending on variations in task-to-processor allocation decisions, there can be mul-
tiple possible schedules with different makespans. For example, Figures 2.6a and 2.6b
show two schedules having makespans 14 and 13 respectively, for the given task set and

waiting for execution.

31

2. BACKGROUND AND RELATED WORK

Input Messages Output Messages
M I

1 M I
2 M I

3 M I
4 M I

5 MO
1 MO

2 MO
3 MO

4 MO
5

1 2 2 1 1 1 1 1 2 1

Table 2.2: Transmission times of input and output messages

T1 T2 T3 T5 T4P1

P2

M I
1 M I

2 M I
3 M I

4 M
I
5 M

O
1 M

O
2 M

O
3 M

O
5 MO

4B1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14

time
(ms)

(a) Schedule 1

T1 T4 T3P1

T5 T2P2

M I
1 M

I
4 M

I
5 M I

2 M I
3 MO

1 M
O
2 M

O
3 MO

4 MO
5B1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

13

time
(ms)

(b) Schedule 2

Figure 2.6: Gantt chart: Independent tasks (Table 2.1) with associated messages (Table 2.2);
Homogeneous processors

associated messages. The generated schedules also show that each task starts only after
it receives the corresponding input message. Similarly, the output message starts its
transmission after the respective task finishes its execution. In Chapter 3 (contribution
1) we present solution strategies for a system model very similar to the second test case
scenario.

In the third case scenario, we consider PTG as the application model. Let us consider
a set of five dependent tasks represented as a PTG in Figure 2.7, to be executed on
the same two processors homogeneous platform. In the PTG, T1 − T5 represent tasks

32

2.4 A Discussion with Motivational Examples

and M1 − M6 represent messages. Tables 2.1 and 2.3 show execution times of tasks
and message sizes/transmission times, respectively. End-to-end deadline of the PTG is
assumed to be 14. There can be multiple possible schedules with different makespans

T1

M1 M3M2

T2 T4T3

M4 M6M5

T5

Figure 2.7: PTG with task and message nodes

M1 M2 M3 M4 M5 M6

1 2 2 1 1 1

Table 2.3: Transmission times of message nodes in the PTG shown in Figure 2.7

based on variations in task-to-processor allocation decisions. For example, Figures 2.8a
and 2.8b show two work-conserving schedules having makespans 10 and 9, respectively.
If both the parent and child tasks Ti and Tj of a message Mk are scheduled on the same
processor, then there is no need to transmit the message Mk over the communication
channel. Hence, in this case the transmission time associated with message Mk becomes
zero. For example in Figure 2.8a, the message M2 is not transmitted as both parent and
child tasks T1 and T3 are scheduled on the same processor P1. From the same figures,
it can also be seen that precedence among task and message nodes in the PTG are
preserved. For example (in Figure 2.8a), task T3 starts after the predecessor task T1

finishes its execution. Similarly, task T2 starts after the predecessor message M1 finishes
its transmission.

33

2. BACKGROUND AND RELATED WORK

T1 T3 T4P1

T2 T5P2

M1 M5 M6B1
0 1 2 3 4 5 6 7 8 9 10

10

time
(ms)

(a) Schedule 1

T1 T3 T4 T5P1

T2P2

M1 M4B1
0 1 2 3 4 5 6 7 8 9

9

time
(ms)

(b) Schedule 2

Figure 2.8: Gantt chart: PTG (Figure 2.7) with tasks (Table 2.1) and message (Table 2.3)
nodes; Homogeneous processors

Today, continuous demands for higher performance and reliability within stringent
resource budgets, is driving a shift from homogeneous to heterogeneous processing plat-
forms for the implementation of CPSs. Depending on processor types, a task may require
same or distinct execution times on different processors, and this must be correctly ac-
counted in the generated schedule. In the fourth test case scenario, we consider the two
processors P1 and P2 to be heterogeneous. Table 2.4 shows the execution times of five
task nodes (of the PTG in Figure 2.7) on P1 and P2. Similarly, Table 2.3 shows the
communication times of message nodes. We consider the deadline of the PTG to be 14.

Figures 2.9a and 2.9b show two work-conserving schedules having makespans 11 and
9 respectively, for the given PTG. From the figures, it can be seen that each task has
consumed distinct amounts of time depending on the processor on which it is assigned.
For example (in Figure 2.9a), task T2 has taken 3 time units on processor P2.

34

2.4 A Discussion with Motivational Examples

T1 T2 T3 T4 T5

P1 2 1 2 4 1
P2 3 3 1 3 2

Table 2.4: Execution times of tasks on two heterogeneous processors

T1 T3 T4P1

T2 T5P2

M1 M5 M6B1
0 1 2 3 4 5 6 7 8 9 10 11

11

time
(ms)

(a) Schedule 1

T1 T3 T4 T5P1

T2P2

M1 M4B1
0 1 2 3 4 5 6 7 8 9

9

time
(ms)

(b) Schedule 2

Figure 2.9: Gantt chart: PTG (Figure 2.7) with tasks (Table 2.4) and message (Table 2.3)
nodes; Heterogeneous processors

A significant amount of work is done on the problem of scheduling PTGs executing
on various distributed platforms [1, 6, 9, 11–13, 32]. Most of these works assumed that
processors are fully-connected. That is each pair of processors have dedicated commu-
nication channel to send/receive data or messages. In the fifth test case scenario, we
consider a distributed platform which is fully-connected. Let us consider the same PTG
(Figure 2.7) as the previous test case. However, we now consider a fully-connected het-
erogeneous distributed platform consisting of three processors P1, P2 and P3. Tables 2.5
and 2.3 show the execution and transmission times of tasks and messages. Figures 2.10a

35

2. BACKGROUND AND RELATED WORK

T1 T2 T3 T4 T5

P1 2 1 2 4 1
P2 3 3 1 3 2
P3 1 2 3 2 3

Table 2.5: Execution times of tasks on three heterogeneous processors

T5P1

T2 T3P2

T1 T4P3
0 1 2 3 4 5 6 7 8

8

time
(ms)

(a) Schedule 1

T2 T5P1

T3P2

T1 T4P3
0 1 2 3 4 5 6

6

time
(ms)

(b) Schedule 2

Figure 2.10: Gantt chart: PTG (Figure 2.7) with tasks (Table 2.5) and message (Table 2.3)
nodes; Heterogeneous processors; Fully-connected

and 2.10b show two work-conserving schedules having makespans 8 and 6 respectively,
for the given PTG. From the same figures, it can also be seen that when both parent
and child tasks are scheduled on different processors, the child task has to wait for the
corresponding message transmission. For example (in Figure 2.10a), task T2 has to wait
for 1 time unit for the transmission of message M1 through the dedicated communica-
tion channel between processors P3 and P2. Chapters 4 and 5 address the problem of
scheduling a PTG on system model very similar to the fourth and fifth test case scenario.

In the previous test case scenario, we have assumed a distributed platform where
processors are fully-connected. However, there exist a vast majority of distributed sys-
tems where processors are connected through shared-bus based communication chan-
nels [41, 42]. Real-time scheduling techniques for this scenario must tackle contention
for shared communication channels, in addition to simultaneously handling the con-
tention of tasks attempting to execute on a shared pool of processing elements. In the
sixth test case scenario, we consider a distributed platform where processors are con-

36

2.4 A Discussion with Motivational Examples

nected through shared-bus based communication medium. Let us consider the same
PTG in Figure 2.7 having deadline 14 and executing on a heterogeneous distributed
platform consists of three processors P1, P2 and P3 connected through a shared bus B1.
Tables 2.5 and 2.3 show the execution times of tasks and transmission times of mes-
sages, respectively. Figures 2.11a and 2.11b show two work-conserving schedules having

T5P1

T2 T3P2

T1 T4P3

M1 M2 M6 M4 M5B1
0 1 2 3 4 5 6 7 8

8

time
(ms)

(a) Schedule 1

T2 T5P1

T3P2

T1 T4P3

M1 M2 M6 M5B1
0 1 2 3 4 5 6 7

7

time
(ms)

(b) Schedule 2

Figure 2.11: Gantt chart: PTG (Figure 2.7) with tasks (Table 2.5) and message (Table 2.3)
nodes; Heterogeneous processors; Shared bus

makespans 8 and 7 respectively, for the given PTG. As all the three processors are
connected through a single shared bus, depending on schedule of messages on the bus,
a task may have to wait for the transmission of other messages which are irrelevant to
it. For example in Figure 2.11b, task T3 has to wait for the transmission of message
M1 which is irrelevant to it, in addition to M2. In the Chapter 6, we consider a similar
platform model for PTG scheduling and present solution for the same.

In the above discussions, we have shown the scheduling of a set of independent
tasks or a single PTG executing on various types of distributed platforms. However,
there can be multiple co-executing control functionalities in the system, with each such
functionalities being represented as a PTG. These control functionalities repeat/execute
periodically. The seventh (also the final) test case scenario considers the problem of
scheduling multiple PTGs on a shared-bus based distributed platform. Let us consider
two PTGs G1 and G2 (Figure 2.12) to be executed on a shared bus-based heterogeneous

37

2. BACKGROUND AND RELATED WORK

distributed platform consisting of three processors (P1, P2 and P3) and one bus (B1).
Here, T gi represents ith task node and M g

k represents kth message node of the PTG Gg.
Tables 2.6 and 2.7 show execution and communication times of tasks and messages,
respectively, in PTGs G1 and G2. Both PTGs G1 (Figure 2.12a) and G2 (Figure 2.12b)
have implicit deadlines D1 = 14 and D2 = 7, respectively. So, hyperperiod for these two
co-executing tasks become 14. Within this hyperperiod we have one instance of G1 and
two instances of G2. We determine a schedule for these two PTGs over one hyperperiod.
The determined schedule will repeat every hyperperiod. Figures 2.13a and 2.13b show

T 1
1

M 1
1 M 1

3M 1
2

T 1
2 T 1

4T 1
3

M 1
4 M 1

6M 1
5

T 1
5

(a)

T 2
1

M 2
1

T 2
2

M 2
2

T 2
3

(b)

Figure 2.12: (a) PTG G1, Deadline D1 = 14; (b) PTG G2, Deadline D2 = 7

Processor
PTG G1 PTG G2

T 1
1 T 1

2 T 1
3 T 1

4 T 1
5 T 2

1 T 2
2 T 2

3

P1 2 1 2 4 1 1 2 3
P2 3 3 1 3 2 2 1 2
P3 1 2 3 2 3 3 3 1

Table 2.6: Execution times of task nodes in PTGs G1 and G2

two different work-conserving schedules for PTGs G1 and G2 executing on the same
distributed platform. We can see that a task of a PTG at different iterations within

38

2.4 A Discussion with Motivational Examples

Bus
PTG G1 PTG G2

M1
1 M1

2 M1
3 M1

4 M1
5 M1

6 M2
1 M2

2

B1 1 2 2 1 1 1 1 2

Table 2.7: Transmission times of message nodes in PTGs G1 and G2

T 2
1 T 1

2 T 2
1P1

T 2
2 T 2

3 T 2
2P2

T 1
1 T 1

3 T 1
4 T 1

5 T 2
3P3

M 2
1 M

1
1 M 1

4 M 2
1 M 2

2B1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14

time
(ms)

(a) Schedule 1

T 2
1 T 1

2 T 2
1P1

T 2
2 T 2

3 T 2
2 T 2

3P2

T 1
1 T 1

3 T 1
4 T 1

5P3

M 2
1 M

1
1 M 1

4 M 2
1B1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

14

time
(ms)

(b) Schedule 2

Figure 2.13: Gantt chart: Multiple PTGs (Figure 2.12; Tables 2.6 & 2.7); Heterogeneous
processors; Shared bus

the hyperperiod may be assigned to different processors and it takes distinct execution
times to compute on its assigned processor. For example in Figure 2.13a, the task T 2

3

is assigned on processor P2 in its first iteration and on P3 in the second iteration. T 2
3

takes 2 time units on P2 and 1 time unit on P3. In Chapter 7, we consider the problem
of scheduling multiple independent PTGs on a shared bus-based distributed platform.

39

2. BACKGROUND AND RELATED WORK

2.5 Multiprocessor Scheduling - A Brief Survey

This dissertation deals with the co-scheduling of tasks and messages for: (1) Mutually
independent task sets, (2) Precedence-constrained Task Graphs (PTGs), (3) Mutually
independent applications, each represented as a PTG. Traditionally, scheduling of real-
time independent tasks on multiprocessor systems has been based on either partitioned
or global approaches [14–16]. With partitioning, the multiprocessor scheduling problem
is transformed into a set of uniprocessor scheduling problem, where each task is assigned
to a designated processor and gets executed entirely on that processor. Well known opti-
mal uniprocessor scheduling algorithms include RM (static priority) and EDF (dynamic
priority), proposed by Liu and Layland [17]. RM is a preemptive, static priority schedul-
ing algorithm where all jobs of a task have the same priority. It assigns higher priorities
to tasks with shorter periods or higher repetition rates. EDF is a preemptive, dynamic
priority scheduling algorithm. Tasks with earlier (absolute) deadlines are executed with
higher priorities. A set of periodic tasks is schedulable with EDF if and only if, U ≤ 1.
With partitioning, as each task runs only on a single processor, there is no penalty due to
inter-processor task migrations. However, a major drawback of partitioning is that, the
problem is provably NP-hard for both homogeneous and heterogeneous multi-cores [46],
and up to half of the system capacity may remain unutilized in order to ensure timing
constraints of a given task set [18].

Unlike the fully partitioned approaches, more global schedulers like Pfair [19], PD2 [20],
ERfair [21], BF [22], SA [23], LLREF [24], RUN [25], DP-Fair [26], can achieve very high
utilization of the system capacity by allowing migrations of tasks among processors. The
Pfair scheduler proposed by Baruah et al. [19] is known to be the first optimal global
real-time scheduler on multiprocessor systems for tasks with implicit deadlines. Based
on Pfair, Anderson et al. [21] proposed a work-conserving multiprocessor scheduling al-
gorithm called the ERfair scheduler. Given a set of n implicit-deadline periodic tasks
to be executed on p homogeneous processors, ERfair ensures that the minimum rate of
progress for each task is proportional to a parameter called the task’s weight wti, which
is defined as the ratio of it’s execution requirement ei and period πi. That is, in order

40

2.5 Multiprocessor Scheduling - A Brief Survey

to satisfy ERfairness, each task Ti should complete at least (∑n
i=1(ei/πi) × t) part of

it’s total execution requirement ei, at any time instant t, subsequent to the start of the
task at time Si. Following the above criterion, ERfair is able to deliver optimal/full
resource utilization; hence, any task set is guaranteed to be schedulable if Equation 2.1
is satisfied.

n∑
i=1

(ei/πi) ≤ p (2.1)

However both the above schemes attempt to maintain proportional fairness at each time
slot and incur unrestricted preemption/migration overheads due to this. Recently, Levin
et al. [26] proposed a semi-partitioned approximate proportional fair optimal scheduler
called DP-Fair with much lower and bounded context switching overheads. DP-Fair is
an optimal two level hierarchical homogeneous multi-resource scheduler. At the outer
level, time is partitioned into slices, demarcated by the periods/deadlines of all jobs in
the system. At the inner level, within a given time slice of length t time slots (say), each
task Ti is allocated a workload equal to its proportional fair share, shri = (ei/πi) ∗ t
and assigned to one or more resources (processor/bus resource) for scheduling. DP-Fair
is an optimal algorithm which ensures full resource utilization. Given a set of n tasks
to be scheduled on p homogeneous resources, DP-Fair guarantees a feasible schedule
if Equation 2.1 is satisfied. Using a combination of techniques including DP-Wrap,
mirroring and fairness-oblivious intra-slice execution, DP-Fair is able to ensure atmost
n−1 context switches and p−1 migrations per time slice [26]. These facets make DP-Fair
a lucrative resource allocation technique which can efficiently combine the twin benefits
of high resource utilization and low scheduling related overheads. However, the above
schemes can not handle the combined scheduling of tasks and messages as required for
Real-Time Cyber-Physical Systems (RT-CPSs) running on distributed systems.

The problem of scheduling PTGs on multiprocessor systems has also received the at-
tention of researchers over many decades. Various optimal solution approaches, such as
linear programming, Best-first search, and other exhaustive enumeration techniques in-
cluding model-based formal synthesis mechanisms, have been proposed [27,28]. Prasanna
et al. [29] devised a control-theoretic optimal scheduling mechanism for task graphs exe-

41

2. BACKGROUND AND RELATED WORK

cuting on a homogeneous multiprocessor system. Later, they have extended their scheme
to include communication overheads between task nodes [30]. Sarad et al. [9] developed a
MILP based PTG scheduling strategy for platforms consisting of a set of fully connected
homogeneous processing nodes. Kanemitsu et al. [32] presented an ILP based optimal
task scheduling scheme for fully-connected heterogeneous distributed systems. Hsiu et
al. [33] developed optimal and approximation algorithms for the scheduling of PTGs on
heterogeneous distributed platforms with shared buses. However, these schemes do not
consider the combined real-time scheduling of tasks and messages as necessary in fully
connected or shared-bus based network system.

Although optimal scheduling solutions may potentially deliver significantly better
performance, it may be noted that computation of such optimal solutions may often
become prohibitively expensive for large problem sizes. Therefore, research in this do-
main has also focused towards the design of low-overhead heuristics that provide quick
and satisfactory schedules. Heuristic scheduling of PTGs on multiprocessor platforms
have often been dealt with list scheduling based techniques. These scheduling strate-
gies typically maintain an ordered priority list of all tasks in the PTG [1, 6, 11–13] and
involves two phases, (i) task prioritization: for selecting the highest-priority ready task
and (ii) processor selection: for selecting a suitable processor that minimizes execu-
tion time. Some examples of this class of techniques include the MCP [34], HLF [35],
CPOP [6], HEFT [6], PEFT [1] and HSV [11] algorithms. They attempt to construct
a static-schedule for the given PTG to minimize the overall schedule length (makespan)
while satisfying resource and precedence constraints. However, none of them are ap-
plicable on real-time PTGs, and assume the underlying communication platform to be
fully-connected.

Designing energy-efficient schedulers for deadline-constrained PTGs executing on dis-
tributed heterogeneous platforms is a computationally hard problem. This is because
each task in the PTG consumes distinct amounts of execution time and energy on differ-
ent processors [8,47]. In [48], the authors have presented an algorithm called Downward
Energy Consumption Minimization (DECM) which utilizes the slack available between

42

2.5 Multiprocessor Scheduling - A Brief Survey

the completion instant of the sink node and the deadline of a PTG, in order to mini-
mize processor operating frequencies. Further, they extended DECM to a new strategy
named Downward and Upward Energy Consumption Minimization (DUECM). DUECM
improves on DECM by utilizing the slack between adjacent task nodes assigned onto
the same processor, while still meeting deadline of the PTG. Huang et al. investi-
gated scheduling approaches on processors which are enabled/not-enabled with DVFS,
for PTGs with hard real-time constraints running on fully-connected heterogeneous sys-
tems [49]. Jian et al. proposed a two-stage algorithm for the energy-aware scheduling
of multiple workflows on DVFS enabled heterogeneous computing systems [8]. In the
first stage, all tasks in the workflows are scheduled using HEFT by setting all processors
at their highest operating voltage. In the next phase, processor operating voltages have
been tuned for each task, to save energy. However, this scheme cannot be employed for
scheduling workflows with real-time requirements. In [50], the authors have explored the
scheduling of multiple deadline-constrained workflows in a cyber-physical cloud environ-
ment with the objective of minimizing energy dissipation of the workflows. However,
this work [50] is applicable to only aperiodic/sporadic workloads as only one instance of
each workflow has been considered in the schedule. It may be noted that none of the
above discussed schemes can be employed to minimize the energy dissipation of multi-
ple periodic real-time PTGs executing on a shared bus based heterogeneous distributed
platform. We have added Table 2.8 to summarize important related works.

2.5.1 An Overview of HEFT & PEFT

Important concepts related to the heuristic PTG scheduling strategies discussed in Chap-
ters 5, 6 and 7 of this thesis are founded on the principles of two classical list based PTG
scheduling algorithms, HEFT and PEFT. We now provide overviews of these two algo-
rithms before concluding this chapter.

Heterogeneous Earliest Finish Time (HEFT) [6] is a list-based heuristic scheduling
algorithm for executing PTGs on a fully connected distributed heterogeneous multipro-
cessor platform, with the objective of minimizing the overall makespan. It has two major
phases, (1) Task Prioritization Phase: In this phase, priorities of tasks are set with the

43

2. BACKGROUND AND RELATED WORK

Existing
work

Solution
type Task type

Computation
resource

type
Data

communication
architecture

Q
oS

A
da

pt
iv

e

E
ne

rg
y

A
w

ar
e

R
ea

l-
ti

m
e

[19,21,26] Optimal Independent
task set Homogeneous N/A No No Yes

[29] Optimal PTG Homogeneous
Data

transmission
overhead ignored

No No No

[9] Optimal PTG Homogeneous Fully connected,
Routing unaware No No No

[32] Optimal PTG Heterogeneous Fully connected,
Routing unaware No No No

[33] Optimal,
Heuristic PTG Heterogeneous Shared bus based,

Routing aware No No Yes

[1, 6, 11] Heuristic PTG Heterogeneous Fully connected,
Routing unaware No No No

[48] Heuristic PTG Heterogeneous Fully connected,
Routing unaware No Yes Yes

[8] Heuristic Multiple
PTGs Heterogeneous Fully connected,

Routing unaware No Yes No

[50] Heuristic Multiple
PTGs Heterogeneous Fully connected,

Routing unaware No Yes Yes

Table 2.8: Summary of related works

upward rank value, ranku, which is based on mean computation and communication
costs. The task list is generated by sorting the tasks in decreasing order of ranku. The
highest priority task is then selected to schedule on the processor. (2) Processor Selec-
tion Phase: In this phase, the highest priority task is selected and assigned to the “best”
processor which minimizes the task’s finish time.

Predict Earliest Finish Time (PEFT) [1] is currently one of the most popular state-

44

2.6 Summary

of-the-art list-based heuristic algorithms for scheduling PTGs on a fully connected dis-
tributed heterogeneous multiprocessor platform. The algorithm is critically pivoted on
a function called OCT () which is used to construct a matrix called Optimistic Cost
Table (OCT), containing values corresponding to each task-processor pair. This OCT
matrix has two important functions: (1) Determination of a rank value for each task
based on which a sorted task list is generated during task prioritization phase. This
list governs the order in which the tasks are considered for processor assignment, and
(2) Determination of the most suitable processor for a task in terms of minimizing the
overall makespan of the schedule.

2.6 Summary

This chapter started with a brief overview about the basic terms and definitions of
real-time systems, followed by literature survey of various scheduling algorithms for
real-time multiprocessor systems. These concepts and definitions will be either referred
or reproduced appropriately later in this thesis, to enhance readability. In the next
chapter, we present strategies for co-scheduling a set of independent periodic tasks with
multiple service-levels, executing on a bus-based homogeneous multiprocessor system.

45

2. BACKGROUND AND RELATED WORK

46

Chapter 3
QoS Aware Scheduling of Independent Task
Sets on Homogeneous Distributed Systems

In the last chapter, we discussed various scheduling algorithms for real-time multipro-
cessor systems with the consideration of different design parameters. In this chapter, we
propose strategies for co-scheduling a set of independent periodic tasks with multiple
service-levels, executing on a bus-based homogeneous multiprocessor system. Here, tasks
may have multiple implementations designated as service-levels, with higher service-
levels producing more accurate results and contributing to higher rewards/Quality of
Service (QoS) for the system. Thus, successful execution of task at a certain service-level
delivers a distinct QoS. The problem is posed as a Multi-dimensional Multiple-Choice
Knapsack formulation (MMCKP) and present a Dynamic Programming (DP) solution
(called MMCKP-DP) for the same. Although DP delivers optimal solutions, it suffers
from significantly high overheads (in terms of running time and main memory consump-
tion) which steeply increase as the number of tasks, service-levels, processors and buses
in the system grows, and severely restricts the scalability of the strategy. Therefore,
in addition to the optimal solution approach MMCKP-DP, we propose an efficient but
low-overhead heuristic strategy called Accurate Low Overhead Level Allocator (ALOLA)
which not only consumes drastically lower time and space complexities but also gener-
ate good and acceptable solutions, and do not significantly deviate from the optimal
solutions.

In this chapter, we first present a detailed description of the problem considered in

47

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

this work followed by the MMCKP based formulation for adaptive resource allocation
and the heuristic solution approach (ALOLA). Subsequently, we discuss experimental
results to evaluate the ALOLA and present a case study based on a real-world applica-
tion. Finally, we concluded the chapter.

3.1 Problem Description

This work considers the problem of off-line scheduling of a set of n persistent real-time
periodic tasks with multiple service-levels, on a system consisting of p homogeneous pro-
cessors and b homogeneous buses. The task deadlines are implicit, that is, deadlines of all
tasks are same as their periods. All processors and buses are synchronized in time. Time
is represented on a discrete scale and is measured as an integral number of time slots.
Each task Ti has |SLi| alternative service-levels SLi = {sli1, sli2, . . . , sli|SLi|}, where each
service-level slij has an associated computation requirement eij to be completed within
a period πij. Associated with each task, there is also an input message which must be
received from a designated sensor prior to the commencement of its computation, via
bus. All tasks produce an output message at the completion of their computations which
is transmitted over a bus to one or more designated actuators. Thus, corresponding to
each service-level slij, a task Ti has input and output message transmission demands of
mxij and myij time slots (over bus(es)) respectively, within every period πij. We assume
both tasks and messages to be preemptive. The computation and total communication
resource demands of task Ti at service-level j are denoted by wtij (wtij = eij

πij
) and wmij

(wmij = mxij

πij
+myij

πij
), respectively. Here, wtij and wmij are referred to as the task weight

and message weight of Ti for the jth service-level. Without loss of generality, we assume
that the period of a task is equal to the sampling period of its input sensor and inverse
of the frequency of actuation of its output. Let, T kij denote the kth instance of task Ti

at service-level slij, with mxkij being its input message and mykij the output message.
The designed algorithm must guarantee that mxkij (from a sensor) is transmitted and
received during the previous period so that the message is available as input to the task
at the beginning of the current period. Similarly, the output message mykij produced

48

3.1 Problem Description

by T kij in the current period should be transmitted over the bus to designated actuators
during the next period. This pipelined design criterion ensures the completion of one
task execution every period, as illustrated in Figure 3.1.

t t+ πij t+ 2πij t+ 3πij t+ 4πij t+ 5πij

myk−3
ij

myk−2
ij

myk−1
ij

mykij

myk+1
ij

. . .

. . .

T k−2
ij

T k−1
ij

T kij

T k+1
ij

T k+2
ij

. . .

. . .

mxk−1
ij

mxkij

mxk+1
ij

mxk+2
ij

mxk+3
ij

Figure 3.1: Pipelined message transmission and execution over a synchronized system of
homogeneous processors and buses

Successful execution of task Ti at a certain service-level slij delivers a distinct Quality
of Service (QoS) which is measured in terms of a numeric reward1 value QoSij. Higher
the service-level of execution, higher the QoS achieved by a task, but higher also be-
comes its resource demands in terms of task and message weights. Thus, computational
requirements have a monotonically increasing relationship with service-levels. The ac-
tual numeric values of reward assigned to the different service-levels of a task depend on
the system wide criticality/importance attributed to the task’s different service-level.

Prior to schedule generation, an appropriate service-level is selected for each task
such that the aggregate QoS obtained by the system is maximized while guaranteeing
feasible schedules for both the tasks’ computation demands as well as messages (Given
the appropriate task service-levels, two different DP-Fair schedulers have been employed
in parallel, one of which allocates processor resources to meet computation demands of
the tasks while other allocates bus resources to schedule task messages). For any task
Ti, we define a binary decision variable xij corresponding to each of its service-levels. xij

1The terms QoS and reward mean the same and has been used interchangeably in the thesis.

49

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

is set to 1, if Ti is executed at slij. From Equation 2.1, it is clear that, given a selected
service-level say, slij for each task, feasible execution may be guaranteed if the following
constraints hold:

n∑
i=1

|SLi|∑
j=1

xij ∗ wtij ≤ p (3.1)

n∑
i=1

|SLi|∑
j=1

xij ∗ wmij ≤ b (3.2)

|SLi|∑
j=1

xij = 1, for i = 1, 2, . . . , n (3.3)

The objective of the problem discussed above may be symbolically expressed as:

max
n∑
i=1

|SLi|∑
j=1

xij ∗QoSij (3.4)

3.1.1 An Optimal Solution Approach (MMCKP-DP)

The objective function in Equation 3.4 along with the constraints in Equations 3.1,
3.2 and 3.3 together constitute a Multi-Dimensional Multiple-Choice Knapsack Problem
(MMCKP). It may be observed that this MMCKP formulation has an optimal substruc-
ture and hence a solution approach based on Dynamic Programming (DP) becomes a
natural choice. Thus, the above MMCKP may be equivalently represented as a recursive
DP formulation as depicted in Equation 3.5 below:

f(k, β, γ) = |SLk|max
j=1

f(k − 1, β − wtkj, γ − wmkj) +QoSkj,

[If wtkj ≤ β, wmkj ≤ γ and
f(k − 1, β − wtkj, γ − wmkj) > 0]

0, [Otherwise]

(3.5)

Here, the function f(k, β, γ) recursively returns the maximum achievable aggregate
QoS/reward considering 1, 2, . . . , k tasks, while limiting computation and communica-
tion resource consumption below β (0 < β ≤ p) and γ (0 < γ ≤ b), respectively. The

50

3.1 Problem Description

constraint: f(k − 1, β − wtkj, γ − wmkj) > 0, in Equation 3.5, ensures that while de-
termining the service-level for the kth task, all tasks from 1, 2, . . . , k − 1 have at least
been assigned at their minimum service-levels. It may be noted that β and γ are free
to take any arbitrary values within the continuous ranges (0, p] and (0, b], respectively.
Therefore, to make β and γ applicable in the DP formulation, the above continuous
ranges have been discretized in terms of a unit called tics. Thus in Equation 3.5, both β
and γ have been measured as integral number of tics ((1 ≤ β ≤ p

tics
) and (1 ≤ γ ≤ b

tics
)).

The necessary base condition corresponding to the above recursion is presented in Equa-
tion 3.6.

f(1, β, γ) = |SL1|max
j=1

QoS1j, [If wt1j ≤ β, wm1j ≤ γ]
0, [Otherwise]

(3.6)

Time Complexity of MMCKP-DP: An implementation of the above DP formu-
lation requires the generation of partial solutions f(k, β, γ) for different values of the
number of tasks (k), as well as all distinct values (β and γ) considered for processor and
communication capacities. For any given value of 〈k, β, γ〉, the partial optimal solution
is provided by choosing that service-level for the kth task which delivers the maximum
QoS. Therefore the overall time complexity becomes,

O

 n∑
i=1
|SLi| ×

p

tics
× b

tics

 (3.7)

where, |SLi| denotes the number of service-levels corresponding to task Ti.
Space Complexity of MMCKP-DP: At any intermediate stage, an efficient im-
plementation of MMCKP-DP necessitates memorization of all partial solutions corre-
sponding to the (k − 1)th task when partial solutions f(k, β, γ) for the kth task is being
derived. As there are p

tics
× b

tics
partial solutions for the kth task and each such solution is

an enumeration of the service-levels assigned to tasks T1, T2, . . . , Tk−1, the overall space
complexity is given by,

O

(
n× p

tics
× b

tics

)
(3.8)

where, n denotes the number of tasks.
The MMCKP-DP strategy suffers from significantly high overheads which steeply in-

crease as the number of tasks, service-levels, processors and buses in the system becomes

51

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

larger. The simulation based experimental evaluation shows that even on moderately
large systems consisting of 90 tasks with 5 service-levels each, 16 processors and 4 buses,
the MMCKP-DP incurs a run-time of more than 1 hour 20 minutes and approximately
68 GB main memory when tics = 0.001. Hence, we propose a fast yet efficient heuristic
algorithm called ALOLA, which attempts to achieve the same objective of maximizing
aggregate rewards such that both computation and communication resource demands
are satisfied.

3.1.2 Accurate Low Overhead Level Allocator (ALOLA)

ALOLA is a greedy but balanced heuristic service-level allocation approach that proceeds
level by level so that a high aggregate QoS may be acquired by the system at much lower
complexity compared to the optimal MMCKP-DP strategy. The mechanism starts by
storing all tasks in a max-heap (based on a key costi) and assigning base service-levels
to all tasks. The algorithm then proceeds by repeatedly extracting the task at the root
of the heap, incrementing its service-level by 1, updating its cost value and reheapifying
it, until residual resources are completely exhausted, or all the tasks have been assigned
their maximum possible service-levels. Algorithm 1 depicts a step-wise description of
ALOLA.

The effectiveness of the solution hinges on the design of the prioritization key, costi.
In order to obtain good and acceptable solutions, ALOLA must not only consider indi-
vidual QoS gains (∆QoSj,li) during service-level enhancements (from level j to l), but
also the amount of incremental consolidated resource (∆CRj,l

i) required during such
an enhancement process. Therefore, the optimization objective gets transformed from
QoS as in MMCKP-DP to (∆QoS/∆CR) in ALOLA. ∆CR produces a measure of
the incremental consolidated resource consumption combining both computation and
communication resource demands and is defined as follows:

∆CRj,l
i = (1− α) ∗∆wtj,li + α ∗∆wmj,l

i (3.9)

Here, ∆wtj,li and ∆wmj,l
i are respectively the extra computation and communication

resource demands of task Ti corresponding to service-level enhancement from level j to

52

3.1 Problem Description

l. The term α is a constant and is defined as the ratio of the relative mean approximate
bus utilization (ABU) of any task with respect to the mean approximate total resource
utilization combining processors (APU) and buses (ABU). Hence, α is symbolically
represented as follows:

α = ABU

APU + ABU
(3.10)

where, [APU = (∑n
i=1

1
|SLi|(

∑|SLi|
j=1 wtij))/M] and [ABU = (∑n

i=1
1
|SLi|(

∑|SLi|
j=1 wmij))/B].

It may be observed that the parameters α and (1−α) provides a measure of the relative
approximate bus utilization and processor utilization for any task considering all possible
service-level assignments over all tasks. This makes α independent of specific service-
levels assigned to the tasks at any time and thus, its value remains unchanged over
the entire execution of the algorithm. Such a static definition of α helps us to control
the overall complexity of the ALOLA algorithm. The key costi which determines the
urgency of each task Ti (towards service-level upgrade) within the heap, is as follows:

costi = max

∆QoSj,j+1
i

∆CRj,j+1
i

,
∆QoSj,|SLi|

i

∆CRj,|SLi|
i

 (3.11)

Here, [∆QoSj,j+1
i /∆CRj,j+1

i] denotes the additional QoS received by the system per unit
consolidated resource consumption, if Ti is upgraded from current service-level j to level
(j+1) and [∆QoSj,|SLi|

i /∆CRj,|SLi|
i] represents the QoS gain per unit additional resource

consumption, if Ti is enhanced from level j to its highest service-level |SLi|.
It was observed that costi (Equation 3.11) is able to provide an appropriate balance

between the immediate gain obtained through a service-level enhancement from j to
(j+1) and the overall obtainable gain for task Ti is (∆QoSj,|SLi|

i /∆CRj,|SLi|
i). A situation

where the consideration of such overall gains may be useful is as follows: Let us consider
the relative urgency of two tasks Ti and Ti′ currently allocated service-level j and j′

respectively (say), at an arbitrary intermediate stage of the resource allocation process
using ALOLA. Assume, [∆QoSj,j+1

i /∆CRj,j+1
i] is lower than [∆QoSj

′,j′+1
i′ /∆CRj′,j′+1

i′].
However,

∆QoSj,|SLi|
i

∆CRj,|SLi|
i

>>
∆QoSj

′,|SLi′ |
i′

∆CRj′,|SLi′ |
i′

.

53

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

ALGORITHM 1: ALOLA
Input: A set of n tasks, p homogeneous processors and b homogeneous buses
Output: Assignment of service-levels to tasks

1 Assign minimum service-level to all tasks
2 forall tasks Ti do
3 Compute costi using Equation 3.11
4 Create max-heap based on costi
5 Insert all tasks into max-heap
6 while max-heap is non-empty do
7 Select root node Ti
8 if Extra resource demands of Ti ≤ available resources then
9 Upgrade service-level of Ti to the next one

10 if current service-level < |SLi| then
11 Recompute costi using Equation 3.11
12 else
13 remove Ti from max-heap
14 else
15 remove Ti from max-heap
16 Heapify max-heap

In such a situation, if overall gain in QoS/reward is not considered as part of the
key, Ti′ will be selected for up-gradation by one level over Ti even if its overall gain
(∆QoSj,|SLi|

i /∆CRj,|SLi|
i) is much greater than

max

∆QoSj
′,j′+1
i′

∆CRj′,j′+1
i′

,
∆QoSj

′,|SLi′ |
i′

∆CRj′,|SLi′ |
i′

 .
A more severe case is that, if Ti’s immediate gain [∆QoSj,j+1

i /∆CRj,j+1
i] is relatively

very low, Ti may be indefinitely starved in spite of potentially handsome overall gains.
Defining the key costi as,

max

∆QoSj,j+1
i

∆CRj,j+1
i

,
∆QoSj,|SLi|

i

∆CRj,|SLi|
i

 ,
appropriately handles the situation.
Time Complexity of ALOLA: The complexity related to the assignment of the
minimum service-level to all tasks and computation of their costi values in lines 1-3, is
O(n). Building the max-heap in line 4 also takes O(n) time. The while loop in lines 6-
16 iterates at most |SLi| times for each task Ti and during each iteration, the heapify

54

3.1 Problem Description

operation (line 16) incurs O(log n) time. So, the overall time complexity of the ALOLA
algorithm becomes O(∑n

1 |SLi| × log n).
Space Complexity of ALOLA: The space complexity of ALOLA is upper bounded
by the memory required to store task weights, message weights and QoS values cor-
responding to all service-levels for each task. So, the overall space complexity of the
ALOLA is O(n×∑n

1 |SLi|).

3.1.3 Example: Service-level Assignment

Consider (n = 3) tasks T1, T2, and T3 with p = 2 processors and b = 1 bus. The〈
wtij, wmij, QoSij

〉
values corresponding to different service-levels of each task are given

in Table 3.1. For these values, APU = 0.95, ABU = 0.933 and α = 0.496.

Task SLi wtij wmij QoSij

T1

sl11 0.3 0.1 2
sl12 0.6 0.2 4
sl13 0.7 0.3 5

T2

sl21 0.6 0.3 4
sl22 0.7 0.4 7
sl23 0.8 0.4 8

T3

sl31 0.5 0.2 2
sl32 0.7 0.3 6
sl33 0.8 0.6 7

Table 3.1: Tasks parameters

The overall residual computation and communication capacities after allocating the
minimum service-level sli1 to each task Ti become: (p − ∑n

i=1 wti1 =) 0.6 and (b −∑n
i=1 wmi1 =) 0.4, respectively. The initial key values corresponding to the three tasks

are cost1 = 9.96, cost2 = 30, cost3 = 26.59. A Max Heap (H) is built using these
key values. T2 with the highest key value (currently, at the root of the max-heap) is
extracted from the heap, its service-level is enhanced from sl21 to sl22, cost2 is updated
(cost2 becomes 19.82) and then T2 is re-heapifyed. Now, T3 with the currently highest

55

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

key value is extracted from the heap, its service-level is upgraded to sl32, the key value
is recomputed (cost3 becomes 5.02) and T3 is re-heapifyed. After this, T2 again becomes
the task with the highest key value and hence, it is upgraded to sl23 subsequent to its ex-
traction from the heap. T2, which has reached its highest enhancement level, is removed
from further consideration and so, it is not reinserted into the heap. Now, T1 which is
the task with the highest key, is extracted from the heap but its service-level cannot be
enhanced further to sl12 as the additional resources necessary for this enhancement is
more than the currently remaining residual resources. T1 is not considered further. Due
to the same reason, T3 also cannot be considered for further enhancement. The heap
becomes empty and the algorithm terminates. The final service-levels for T1, T2 and T3

are sl11, sl23 and sl32, respectively and the aggregate QoS fetched by the system is 16.

3.1.4 Offline Schedule Generation

The ALOLA algorithm provides the final service-levels at which each task should be
executed. Subsequent to this, the DP-Fair scheduling technique is employed to allocate
tasks on processors and messages on buses, for the entire duration H corresponding to
the system’s hyperperiod. These offline schedules are then used for online execution and
repeat every hyperperiod.

We explain the generation of DP-Fair schedules by continuing with the illustrative
example presented in Section 3.1.3. For the service-levels selected by ALOLA, the task
weights of T1, T2 and T3 are 0.3, 0.8 and 0.7 respectively, while the corresponding message
weights are 0.1, 0.4 and 0.3 respectively. The tasks are first partitioned into the available
processors and buses by: (i) lining them up over two separate scales based on task and
message weights, as shown in Figures 3.2a and 3.3a respectively, and (ii) extracting unit
length chunks from designated scales for allocation on to distinct processors and buses,
as depicted by Figures 3.2b and 3.3b. It may be observed from Figure 3.2b that after
partitioning, task T2 becomes a migrating task with one part (0.7-out-of-0.8) allocated
to processor P1 and the other part (0.1-out-of-0.8) allocated to P2.

Let the execution times, message transmission times and periods (
〈
eij,mij, πij

〉
) for

the tasks (at their selected service-levels) be: T1 〈9, 3, 30〉, T2 〈12, 6, 15〉, T3 〈7, 3, 10〉. To

56

3.1 Problem Description

construct a DP-Fair schedule, the hyperperiod of duration H = 30 (LCM(30, 15, 10),
where LCM is the least common multiple), is divided into slices ts1 = 10, ts2 = 5, ts3 = 5
and ts4 = 10, demarcated by the periods/deadlines of all jobs in H. The tasks and
messages are then allocated resource shares in each time slice in proportion to their
allocated weights on appropriate processors and buses, as designated by the partitioning
process. For example, based on the task weight partition obtained in Figure 3.2b, T1 and
T3 are allocated execution shares 3 and 7 on P1 and P2 respectively, in time slice ts1. Also
T2, the migrating task, receives shares 7 and 1 on P1 and P2 in ts1. Figure 3.2c depicts
the schedule of task execution over all the four time slices in H. It may be observed from
the figure that the scheduling sequences in consecutive time slices are mirrored in order
to avoid task migrations at time slice boundaries. The system is able to limit context
switches to 2 and number of migrations to 1 per time slice on our example three-task-
two-processor system. The message schedule is obtained in a way very similar to the
generation of the task schedule using the DP-Fair algorithm. Figure 3.3c depicts the
obtained message schedule for the entire hyperperiod H.

T1
0.3

T2
0.8

T3
0.7

P1 P2

(a) Tasks lined up on a scale based on task weights. The
dotted line partitions the chunks of at most unit length

T1
0.3

T2
0.7

T2
0.1

T3
0.7P1 P2

(b) Tasks partitioned on to processors P1 and P2. The white colored block in
P2 represents unused capacity

T1 T1 T1 T1T2 T2 T2 T2P1

T2 T2 T2T3 T3 T3 T3P2

0 10 15 20 30

ts1 ts2 ts3 ts4

(c) Task schedule for hyperperiod H

Figure 3.2: Partitioning and Scheduling of Tasks using DP-Fair

57

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

T1
0.1

T2
0.4

T3
0.3

B1

(a) Message weight partitioning

T1
0.1

T2
0.4

T3
0.3B1

(b) Allocated message weights to bus

T1 T1 T1T2 T2 T2 T2T3 T3 T3 T3B1

0 10 15 20 30

ts1 ts2 ts3 ts4

(c) Message schedule for hyperperiod H

Figure 3.3: Partitioning and Scheduling of Messages using DP-Fair

3.2 Experiments and Results

In this section, we experimentally evaluate the performance of the ALOLA algorithm and
compare it against the optimal MMCKP-DP strategy in terms of both performance (total
QoS acquired) and execution time required. The proposed work has been evaluated using
simulation based experiments.

3.2.1 Data Generation Framework

The experimentation framework is used as follows: The data sets consist of randomly
generated hypothetical periodic tasks whose periods (πi1), task weights (ei1/πi1) and
message weights (mi1/πi1) for lowest/base service-level have been generated from normal
distributions with mean

〈
mean(µ), standard deviation(σ)

〉
values being 〈2000, 400〉,

〈0.2, 0.1〉 and 〈0.2, 0.1〉, respectively. The reward values (QoSi1) of the tasks are gen-
erated from a uniform distribution within the range from 20 to 200. Given n tasks,
p processors and b buses, the processor utilization PU and bus utilization BU corre-
sponding to a data set generated using the above mentioned distributions are given by:

58

3.2 Experiments and Results

PU = 1
p

n∑
i=1

wti1 and, BU = 1
b

n∑
i=1

wmi1 (3.12)

Experiments have been conducted with data sets having different PU and BU values
varying within the range from 0.6 to 1. To obtain a desired and fixed value of PU
and BU corresponding to a given data set, the generated weights wti1 and wmi1 are
appropriately scaled. All tasks are assumed to have 5 service-levels. The weights (wtij
or wmij) for non-base service-levels (starting from level 2) of the tasks are assigned
uniform random values bounded between 110% and 120% of the weights (wti(j−1) or
wmi(j−1)) corresponding to their immediately lower service-levels. The rewards (QoSij)
for any task Ti increase monotonically as service-levels become higher. The values of the
rewards have been chosen randomly from the range 20 to 200, while ensuring that the
random reward value for a task at a given service-level is higher than the reward values
at lower service-levels.

We have conducted experiments with data sets having 15, 30, 45 and 60 tasks,
#processors varying between 2 to 8 and #buses varying between 1 to 4. All data points
in the plots presented below are obtained by taking the average of the results from 50
different runs of a given experiment, executed with distinct data sets for a fixed set of
parameters. All experiments have been carried out on a 2.5 GHz core, with 128 GB of
physical memory.

3.2.2 QoS Measurements

The performance of ALOLA and MMCKP-DP have been evaluated and compared using
a metric called Normalized Reward (NR) and is defined as,

NR (in %) = RACT

RMAX

× 100 (3.13)

where, RACT is the total reward acquired through a given service-level assignment and
RMAX is the maximum achievable reward (when the highest service-level is always as-
signed). Two categories of experiments have been conducted. The first category conducts
performance analysis in scenarios where bus resources are unlimited, that is, the bus ca-
pacity remains underloaded even when all tasks are assigned highest service-levels. For

59

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

the second category, we assume unlimited processor resources.

Results (Category 1): Figure 3.4 presents the NR plots obtained for both ALOLA
and MMCKP-DP in systems consisting of 15, 30, 45 or 60 tasks, 8 processors and
processor utilization with respect to minimum service-levels PU (refer Equation 3.12)
varying between 0.6 and 1. It may be observed from the figure that as is obvious, QoS
based rewards decrease monotonically as PU increases. This is because the probability of
attaining higher service-levels is reduced with the increase in PU . The optimal algorithm
is seen to significantly outperform the heuristic strategy ALOLA (by about 5% to 10%)
for values of PU between ∼ 0.6 and ∼ 0.85. However, as system load increases further
and PU approaches ∼ 1, both the optimal and heuristic strategies select only the lowest
service-level for each task. This is indicated in Figure 3.4, which shows that both
MMCKP-DP and ALOLA deliver the same NR values for the same number of tasks,
when PU = 1. In Table 3.2, we present the average NR values acquired by both the
algorithms for a system consisting of 45 tasks, five distinct values of PU (0.6, 0.7, 0.8, 0.9
and 1) and four distinct number of processors (2, 4, 6 and 8). The table shows that the
performance of both algorithms degrade as system load increases and that MMCKP-DP
outperforms ALOLA in all cases except fully loaded systems (PU = 1), conforming the
observations made for Figure 3.4. However, the NR values are not seen to significantly
vary with increase in the number of processors for any given value of PU .
Results (Category 2): Experiments for category 2 have been conducted for similar
scenarios as category 1, although here, we vary bus utilization BU (refer Equation 3.12)
from 0.6 to 1, instead of processor utilization PU . As depicted in Figure 3.5 and Ta-
ble 3.3, the trends of the results corresponding to this category are almost identical to
those obtained for category 1.

3.2.3 Time Measurements: Results

The performance of the designed algorithms with respect to incurred running times have
been evaluated by measuring their actual average run-times over various data sets (here,
run-time denotes only service-level selection overheads and does not include running

60

3.2 Experiments and Results

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.6 0.7 0.8 0.9 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Processor Utilization (PU)

ALOLA, 15 Task
ALOLA, 30 Task
ALOLA, 45 Task
ALOLA, 60 Task

MMCKP-DP, 15 Task
MMCKP-DP, 30 Task
MMCKP-DP, 45 Task
MMCKP-DP, 60 Task

Figure 3.4: Processor Utilization (PU) Vs. NR

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.6 0.7 0.8 0.9 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Bus Utilization (BU)

ALOLA, 15 Task
ALOLA, 30 Task
ALOLA, 45 Task
ALOLA, 60 Task

MMCKP-DP, 15 Task
MMCKP-DP, 30 Task
MMCKP-DP, 45 Task
MMCKP-DP, 60 Task

Figure 3.5: Bus Utilization (BU) Vs. NR

PU Algorithm
#Processors

2 4 6 8

0.6 MMCKP-DP 86.94 86.88 86.2 86.51
ALOLA 78.25 79.11 78.84 79.29

0.7 MMCKP-DP 74.5 74.24 73.91 74.68
ALOLA 66.93 66.71 67.11 67.57

0.8 MMCKP-DP 61.93 60.64 61.84 60.68
ALOLA 54.8 54.88 55.91 55.14

0.9 MMCKP-DP 47.29 46.44 46.58 47.22
ALOLA 43.03 42.84 43.52 44.3

1 MMCKP-DP 21.16 19.55 19.82 19.19
ALOLA 21.16 19.55 19.82 19.19

Table 3.2: QoS (NR) of MMCKP-DP
and ALOLA for varying Processor Utilization
(PU) and #Processors

BU Algorithm
#Buses

1 2 3 4

0.6 MMCKP-DP 87.38 87.02 87.13 86.55
ALOLA 76.06 77.49 77.76 77.4

0.7 MMCKP-DP 75.25 74.96 75.16 74.83
ALOLA 65.51 65.55 65.6 65.58

0.8 MMCKP-DP 62.69 62.23 61.63 61.71
ALOLA 53.71 53.83 54.37 54.54

0.9 MMCKP-DP 46.72 47.39 47.41 47.57
ALOLA 40.39 41.35 42.16 42.43

1 MMCKP-DP 22.7 21.02 19.99 19.82
ALOLA 22.7 21.02 19.99 19.82

Table 3.3: QoS (NR) of MMCKP-DP and
ALOLA for varying Bus Utilization (BU)
and #Buses

time of the scheduled tasks on the processors/buses). Then, we have determined the
speedup achieved by ALOLA over MMCKP-DP. That is,

speedup = Running time of MMCKP-DP
Running time of ALOLA (3.14)

Speedups have been measured for both the categories of experiments for which perfor-
mance evaluation in terms of QoS was conducted.

Results: Figures 3.6 and 3.7 depict results for the running times incurred by ALOLA

61

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

for category 1 (which considers 15 to 60 tasks, 4 and 8 processors, 2 buses, with PU being
varied between 0.6 and 1) and category 2 (which considers 15 to 60 tasks, 8 processors, 2
and 4 buses, with BU being varied between 0.6 and 1) experiments, respectively. From
both figures, it may be seen that run-time of ALOLA decreases as PU (category 1:
Figure 3.6) or BU (category 2: Figure 3.7) increases. This is obvious because with the
increase in utilization, residual capacities reduce and exhaust more quickly during the
execution of ALOLA, thus giving the strategy less opportunity to select higher service-
levels. For any given utilization, running times increase with the number of tasks. This
is also expected because the time complexity of ALOLA is directly proportional to the
number of tasks and service-levels. However, for any given utilization and number of
tasks, the run-times remain unaffected by the change in number of processors (category
1: Figure 3.6) or number of buses (category 2: Figure 3.7). In Table 3.4, we present the
speedups achieved by ALOLA over MMCKP-DP for 15 to 90 tasks, number of processors
varying from 2 to 16 (with #buses b = 2, PU = 0.7; underloaded bus capacity) and
number of buses varying between 1 to 4 (with #processors p= 16, BU = 0.7; underloaded
processor capacity). The actual speedups are 106 times the values (say, x) shown in the
table (that is, actual speedup = x × 106 times). It may seen that speedups increase
with the number of tasks, processors and/or buses. The reason may be attributed to
the complexity of MMCKP-DP which is highly sensitive to the number of tasks, their
service-levels, as well as the number of processors and buses (refer Equation 3.7). In
comparison, the complexity of ALOLA exhibits significantly lower sensitivity to the
number of tasks and service-levels (refer Section 3.1.2). ALOLA’s running time is also
dependent on the residual processor and bus capacities. Therefore, run-time of ALOLA
does not significantly vary with changes in the number of processors and/or buses, being
only indirectly sensitive to them.

3.3 Case Study: Flight Management System

To illustrate the generic applicability of our proposed strategy to real world designs,
we present a case study using an automated flight control system employed in modern

62

3.3 Case Study: Flight Management System

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.6 0.7 0.8 0.9 1

R
u

n
n

in
g

 T
im

e
 (

in
 m

ill
is

e
c
o

n
d

s
)

Processor Utilization (PU)

15 Tasks, 4 Processors
15 Tasks, 8 Processors
30 Tasks, 4 Processors
30 Tasks, 8 Processors

45 Tasks, 4 Processors
45 Tasks, 8 Processors
60 Tasks, 4 Processors
60 Tasks, 8 Processors

Figure 3.6: ALOLA: Processor Utilization
(PU) Vs. Running Time

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.6 0.7 0.8 0.9 1

R
u

n
n

in
g

 T
im

e
 (

in
 m

ill
is

e
c
o

n
d

s
)

Bus Utilization (BU)

15 Tasks, 2 Buses
15 Tasks, 4 Buses
30 Tasks, 2 Buses
30 Tasks, 4 Buses

45 Tasks, 2 Buses
45 Tasks, 4 Buses
60 Tasks, 2 Buses
60 Tasks, 4 Buses

Figure 3.7: ALOLA: Bus Utilization (BU)
Vs. Running Time

Number
of Tasks

Speedup (x× 106)
#Processors #Buses

2 4 6 8 16 1 2 3 4
15 0.12 0.7 1.13 1.66 2.89 1.46 2.9 4.52 6.33
30 0.62 1 1.55 2.14 4.06 2.52 5.92 8.11 9.25
45 0.75 1.51 2.36 3.02 6.03 2.88 7.19 10.53 13.58
60 0.89 1.97 2.81 3.78 8.08 3.54 8.52 10.95 14.71
75 1.11 2.26 3.12 4.45 8.14 5.98 9.79 14.34 18.32
90 1.21 2.58 4.19 4.7 10.07 5.9 11.48 17.4 24.23

Table 3.4: Speedup of ALOLA with respect to MMCKP-DP

avionic systems. The FMS in an aircraft performs several flight control functions like
flight planning, navigation, guidance and control [51]. FMS employs four separate tasks,
namely, Guidance, Control, Slow Navigation and Fast Navigation, to control the aircraft
during flight. The Guidance task (say T1) sets the reference trajectory of the aircraft
with respect to altitude and heading. The Control task (say T2) executes closed loop
control functions that compute actuator commands based on reference trajectory and
navigation sensor values. Actuator commands for numerous components including ele-
vator, ailerons, rudder and throttle are executed by the control task in order to achieve
desired reference altitude and heading for the aircraft. The Slow Navigation task (say

63

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

T3) reads data from sensors at low frequencies which are used by the less critical Guid-
ance task to determine high-level altitude and heading commands. The Fast Navigation
task (say T4) on the other hand, is used to read data from sensors at higher frequencies
which are used by the higher critical Control task. In addition to these basic tasks
(Guidance, Control, Slow Navigation and Fast Navigation), a fighter aircraft like F-16
performs an additional task, Missile Control (say T5), which monitors the aircraft radar
to detect enemy targets and if a target has been detected, it fires a missile to destroy
the target.

We have used the task set corresponding to FMS simulation of F-16 fighter air-
craft, from [7]. Table 3.5 shows the execution times (ei), message transmission times
(mi), periods (πi), computation demands (wti), communication demands (wmi) and
QoS (QoSi) for the different service-levels (SLi) of all the five tasks mentioned above.
Both algorithms MMCKP-DP and ALOLA run successfully on the task set in Table 3.5.
In this particular case, the heuristic algorithm ALOLA assigns the same service-levels
to the tasks as the optimal algorithm MMCKP-DP. The assigned service-levels to tasks
T1, T2, T3, T4, and T5 by both ALOLA and MMCKP-DP are sl13, sl23, sl32, sl43, and sl52,
respectively. The aggregate QoS fetched by the system due to this assignment is 464.

3.4 Applicability Considerations

ALOLA is designed keeping in mind of the communication protocols that allow messages
to be preempted/migrated. However, to use ALOLA with communication protocols that
do not allow message preemption/migration, the largest size a message can have, must be
restricted to the size of the smallest time slice within the hyper-period. This is because,
time slots, time slices and task periods, have the same length and are always synchronized
across all processors and buses. For a major class of real-time control systems, where
message sizes (in terms of transmission time) are typically very small compared to the
sizes of control tasks, this restriction may not be impractical. For example CAN, a
common bus protocol used for control data transmission in automotive applications,
allow message (frame) payloads to be at most 64 bytes with data rates being 5 Mbps

64

3.4 Applicability Considerations

Tasks SLi ei [ms] mi [ms] πi [sec] wti wmi QoSi

T1
(Guidance)

sl11 100 80 10 0.01 0.008 10
sl12 100 80 5 0.02 0.016 15
sl13 100 80 1 0.1 0.08 20

T2
(Controller)

sl21 80 100 5 0.016 0.02 1
sl22 60 80 1 0.06 0.08 100
sl23 80 100 1 0.08 0.1 104
sl24 60 80 0.2 0.3 0.4 120
sl25 80 100 0.2 0.4 0.5 124

T3 (Slow
Navigation)

sl31 100 120 10 0.01 0.012 10
sl32 100 120 5 0.02 0.024 20
sl33 100 120 1 0.1 0.12 25

T4 (Fast
Navigation)

sl41 60 70 5 0.012 0.014 1
sl42 60 70 1 0.06 0.07 100
sl43 60 70 0.2 0.3 0.35 120

T5 (Missile
Control)

sl51 500 200 10 0.05 0.02 1
sl52 500 200 1 0.5 0.2 200

Table 3.5: Task set of FMS [7]

(for the CAN FD standard). So, a CAN message can be very comfortably transmitted
within 1 millisecond, which is the typical size of a time slot (and hence, the minimum
time slice length) as considered in this work. Thus, ALOLA can be seamlessly used with
protocols like CAN, completely avoiding message preemption/migration.

In addition, task deadlines/periods are often adjustable within bounded limits [52–55]
in many real-time systems. This flexibility can be used with ALOLA to obtain lower
bounds on time slice lengths which are significantly higher than the size of a single time
slot (1 millisecond). With this approach, ALOLA can also be used with communication
protocols which support considerably higher message sizes compared to CAN, but do
not allow message preemption/migration.

More recently, there is a proliferation in the use of distributed real-time systems in

65

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

a variety of application domains such as smart industries, smart-grids, medical systems,
automotive and avionic systems etc., many of which may need to support even larger
message sizes than those in more traditional control systems. Keeping in view the
emergence of applications which need to support large message sizes, newer research
works and protocols are evolving. These strategies allow large messages to be split
into smaller chunks which may possibly be transmitted in an independent fashion. For
example, Glabbeek et al. in [56] proposed the Fragmentation and Reassembly protocol
running on top of the CAN bus, to split large messages into multiple fixed size frames at
the transmission end, and to reassemble the fragmented messages at the receiver end. In
the presence of multiple CAN buses, different frames of the same message can possibly
be transmitted over distinct buses. As another example, in the futuristic Ethernet based
IEEE 802.1Qbv Time Sensitive Networking (TSN) [57–59], each message of a message
stream/flow, can be split into multiple Ethernet frames, and each Ethernet frame can
follow different paths. Thus, the two protocols discussed above effectively allow both
preemption and migration of messages.

Although, the proposed scheme ALOLA is a simple generic processor-bus co-scheduling
strategy which has not been designed with any particular protocol in mind, we purview
that it is possible to extend ALOLA in order to support any of the above protocols,
with moderate effort. This work assumes that all buses are connected to every device
in the system, and the assumption is true when the intended system under design is
small-scale, containing a small number of devices and geographically spread over a small
area. However in the case of larger systems where devices cannot be connected to all
buses, ALOLA cannot be directly employed and must be appropriately adapted. There
may be a need to adopt a more partitioned approach where a subset of devices (consist-
ing of processors, sensors and actuators) is connected to a disjoint sub-group of buses,
and a device is always connected to all buses within a sub-group. Among devices, a
single sensor/actuator may possibly be connected to multiple bus sub-groups. Now, a
separate ALOLA scheduler can be deployed for each distinct sub-group of buses and the
processors connected to this bus sub-group.

66

3.5 Summary

3.5 Summary

Many cyber-physical systems including those in the automotive domain often execute
applications which necessitate combined scheduling on both processors and buses. In
this chapter, we consider independent periodic tasks with multiple service-levels, where
each instance of a task also needs to receive data from sensor(s) and produce data to
actuator(s) through one or more system buses. The scheduling problem is modeled as a
Multi-dimensional Multiple-Choice Knapsack Problem formulation and shown that con-
ventional Dynamic Programming based solution approaches are very expensive. There-
fore, we have proposed a heuristic strategy called ALOLA, which is very fast producing
speedups of the order of 106 times with respect to the optimal Dynamic Programming so-
lution and also efficient, being able to control performance degradations to at most 13%
compared to the optimal solutions. While this chapter considers the scheduling of inde-
pendent tasks, the remaining chapters of this thesis deals with Precedence-constrained
Task Graphs (PTGs). Applications represented as PTGs are increasingly becoming im-
portant in CPSs ranging from automotive and avionics domains, smart grids, nuclear
plants, etc. Many of these CPSs are quickly moving from homogeneous to heterogeneous
platforms in order to extract higher application specific performance, better thermal and
power characteristics, etc. Hence, in the next and subsequent chapters, we delve with
computation-communication co-scheduling strategies for PTGs on heterogeneous dis-
tributed systems.

67

3. QOS AWARE SCHEDULING OF INDEPENDENT TASK SETS ON
HOMOGENEOUS DISTRIBUTED SYSTEMS

68

Chapter 4
Optimal Scheduling of PTGs on
Heterogeneous Distributed Systems

In the previous chapter, we have considered the problem of scheduling real-time indepen-
dent task sets running on homogeneous multiprocessor systems. However, Continuous
demands for higher performance and reliability within stringent resource budgets is
driving a shift from homogeneous to heterogeneous processing platforms for the imple-
mentation of today’s CPSs. These CPSs are often distributed in nature and typically
represented as PTGs due to the complex interactions between their functional compo-
nents. This chapter discusses two optimal scheduling mechanism for a real-time sys-
tem modelled as a PTG to be executed on a fully connected distributed heterogeneous
platform. Here, tasks may have multiple implementations designated as service-levels,
with higher service-levels producing more accurate results and contributing to higher
rewards/QoS for the system. To solve the problem, an ILP based optimal solution ap-
proach namely, ILP - Service-level Allocation with Timed Constraints (ILP-SATC), is
proposed. Though the formulation of ILP-SATC follows an intuitive design flow, its
scalability is limited primarily due to the explicit manipulation of task mobilities be-
tween their earliest and latest start times. In order to improve scalability, a second
ILP based strategy namely, ILP - Service-level Allocation with Non-overlapping Con-
straints (ILP-SANC), has been designed. Instead of explicitly relying on task mobility
based manipulations as ILP-SATC, ILP-SANC guarantees that the executions of no two
tasks in the system overlap in time on the same processor. This modification in the de-

69

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

sign approach allows the constraint set in ILP-SANC to be independent of the deadline
of a given PTG.

In this chapter, we first present a detailed description of the problem considered
in this work, followed by the formulation of ILP-SATC and ILP-SANC. Then, both
the ILP formulations have been comprehensively evaluated through an extensive set of
experiments over benchmark PTGs. Performance of the design strategies have also been
compared against a state-of-the-art approach [1]. Finally, we demonstrate the practical
applicability of the ILP based formulation using a real-world case study on an Adaptive
Cruise Controller (ACC) application and conclude the chapter.

4.1 The Task and Platform Models

This work considers a periodic application represented as a PTG G = (T,E) to be exe-
cuted on a fully-connected heterogeneous multiprocessor platform consisting of a set of
processors P = {P1, P2, . . . , Pp}. Figure 4.1 shows the pictorial representation of the
fully-connected heterogeneous multiprocessor platform as considered here. Each proces-
sor has its own private memory. For any given processor, task execution and communi-
cation with other processors can be conducted simultaneously, without any contention.
Specifically, we assume that tasks on different processors communicate by transmitting
data from the source processor via the fully-connected network to the local memory of
the receiving processor. On the other hand, intra-processor communication is realized
through the reading and writing of variables stored in the local memory of the processor.

Processing
Element P1

Processing
Element P2

Processing
Element P3

Processing
Element P4

Figure 4.1: Fully connected multiprocessor system

70

4.1 The Task and Platform Models

• T = {T1, T2, . . . , Tn} represents n task nodes.

• E ⊆ T×T denotes the edge-set that describes precedence-constraints between pairs
of tasks in T . The symbol mij is used to denote the communication cost associated
with the edge Ti −→ Tj; mij = 0, when Ti and Tj are assigned to the same processor.
All tasks/messages in PTG G execute/transmit non-preemptively.

• Each task Ti has SLi = {sli1, sli2, . . . , sli|SLi|} alternative service-levels. Associated
with a given service-level slil of task Ti, there exists p possibly distinct worst-case
execution times eilr (i ∈ [1, n], l ∈ [1, |SLi|], r ∈ [1, p]) corresponding to the p
heterogeneous processors. There is a reward QoSil which is obtained on successful
completion of every instance of Ti.

• Given any two service-levels slil and slil′ of task Ti such that l < l′, the execution
times on any processor Pr are related as eilr ≤ eil′r. However, the processors
being heterogeneous, the execution times of a task on two different processors are
completely unrelated.

• The execution times of a task Ti on processor Pr for all service-levels is set to ∞,
to model the scenario in which the execution of Ti is infeasible on Pr.

• Each instance of application G has an associated deadline D. Two consecutive
instances of G are separated by a period π. We assume the deadline to be implicit,
i.e., D = π.

To denote in-degree and out-degree of the task node Ti, we use the notations indeg(Ti)
and outdeg(Ti), respectively. Given a pair of task nodes 〈Ti, Tj〉, Ti (Tj) is said to be
the predecessor (successor) of Tj (Ti) if there is an edge (Ti → Tj) form Ti to Tj. To
denote predecessor and successor of the task node Ti, we use the notations pred(Ti) and
succ(Ti), respectively. Similarly, given two tasks Ti and Tj, Ti (Tj) is said to be the
ancestor (descendant) of Tj (Ti), if Ti ≺ Tj i.e., there exists a path from Ti to Tj, in the
PTG.

71

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

Example: An example of a PTG G and its task parameters are shown in Figure 4.2
and Table 4.1, respectively. PTG G consists of 6 tasks, each task having 2 service-levels.
Each task Ti may have distinct execution times eilr on each processor Pr for any given
service-level slil along with associated reward QoSil. For example, at service-level sl11,
task T1 has execution times e111 = 3 and e112 = 1 on processors P1 and P2, respectively,
and an associated reward QoS11 = 4. An edge between T1 and T2 has an associated
communication cost of 2.

T1

T3T2 T4

T5

T6

2 1 3

1 3

1

2

D
=

10

Figure 4.2: Example of a PTG G

Task SLi
eilr

QoSil
P1 P2

T1
sl11 3 1 4
sl12 4 2 7

T2
sl21 1 2 5
sl22 2 3 9

T3
sl31 2 3 2
sl32 3 4 6

T4
sl41 4 1 3
sl42 6 3 9

T5
sl51 1 4 1
sl52 3 7 8

T6
sl61 3 2 2
sl62 4 3 4

Table 4.1: Values of tasks in Figure 4.2

Problem Statement: Generate a real-time schedule consisting of a feasible processor
assignment, service-level and start time for each task node of a given PTG having a
stipulated end-to-end deadline, such that the total QoS acquired by the system is maxi-
mized while ensuring that deadline, precedence and resource constraints are not violated
on a fully-connected heterogeneous multiprocessor platform.

4.2 Earliest/Latest Start Times for PTG Nodes

Let, tsi and tli be the earliest and latest time steps at which task Ti may start its execution.
It may be noted that tasks may be scheduled on any processor and at any service-level. In
addition, communication overheads are ignored when a task node Ti and its successor Tj

72

4.2 Earliest/Latest Start Times for PTG Nodes

are scheduled on the same processing node. Hence, in order to get all possible valid ranges
of start times, (i) we ignore communication costs associated with edges i.e., mij = 0,
and (ii) we consider execution times of tasks corresponding to their lowest service-levels.
The tsi (ASAP time) and tli (ALAP time) values for task nodes are computed as follows.
ASAP time computation procedure:

1. The in-degree of task node Ti is represented as indeg(Ti).

2. ∀Ti|indeg(Ti) = 0, set ASAP time of Ti as, tsi = 1.

3. ASAP times for the remaining task nodes (except Ti, where indeg(Ti) = 0) are
recursively determined (downward) as follows:

tsi = max
Tj∈pred(Ti)

(tsj + min
r∈[1,p]

ej1r)

where, pred(Ti) is the set of predecessors of task node Ti.

ALAP time computation procedure:

1. The out-degree of task node Ti is represented as outdeg(Ti).

2. ∀Ti|outdeg(Ti) = 0, set ALAP time of Ti as,

tli = D − min
r∈[1,p]

ei1r + 1

3. ALAP times for the remaining task nodes (except Ti, where outdeg(Ti) = 0) are
recursively determined (upward) as follows:

tli = min
Tj∈succ(Ti)

(tlj − min
r∈[1,p]

ei1r)

where, succ(Ti) is the set of successors of task node Ti.

Example (contd.): Let us assume the deadline D of PTG G (in Figure 4.2) to be 10
time units. Table 4.2 shows the ASAP and ALAP times corresponding to each task
node in G, obtained through the above discussed procedure. For example, ASAP and
ALAP times of task node T1 are 1 and 5, respectively. �

73

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

T1 T2 T3 T4 T5 T6

ASAP 1 2 2 2 4 5
ALAP 5 7 6 8 8 9

Table 4.2: ASAP & ALAP times of nodes in G (Figure 4.2)

4.3 ILP Formulation: ILP-SATC

In this section, we present an ILP based solution to the PTG scheduling problem. First,
let us consider a set of binary decision variables: X = {Xilrt : i = 1, 2, . . . , n; l =
1, 2, . . . , |SLi|; r = 1, 2, . . . , p; t = 1, 2, . . . , D}. Xilrt is set to 1, if task Ti is executed
at service-level slil on processor Pr and starts its execution at time step t; Xilrt = 0,
otherwise. We now present the required constraints on the binary variables X to model
the scheduling problem.

4.3.1 Unique Start Time Constraint

The start time of each task should be unique. That is, each task node Ti must start its
execution only at one service-level slil at a unique time step t on a distinct processor Pr.

∀i ∈ [1, n]
|SLi|∑
l=1

p∑
r=1

tli∑
t=tsi

Xilrt = 1 (4.1)

4.3.2 Resource Constraint

Resource bounds for processors must be satisfied at each time step. Any processor r
can execute at most one task at a given time. In this regard, it may be noted that a
task node Ti can only be executing on processor Pr at time t, if it has started at most
t− eilr + 1 time steps earlier.

∀t ∈ [1, D] and ∀r ∈ [1, p]
n∑
i=1

|SLi|∑
l=1

t∑
t′=ψ

Xilrt′ 6 1 (4.2)

where, ψ = t− eilr + 1.

74

4.3 ILP Formulation: ILP-SATC

4.3.3 Dependency Constraint

Precedence-constraints between task pairs must be satisfied. For each directed edge
(Ti

mij−−→ Tj), the execution of Ti along with the transmission of its output message must
complete before Tj starts. The message communication cost is neglected if both Ti and
Tj are executed on the same processor.
∀Ti, Tj ∈ E | Ti ∈ pred(Tj) and Tj ∈ succ(Ti)

|SLi|∑
l=1

p∑
r=1

tli∑
t=tsi

(t+ eilr +mij) ∗Xilrt −mij ∗ Yij 6
|SLj |∑
l=1

p∑
r=1

tlj∑
t=tsj

t ∗Xjlrt (4.3)

where,

Yij =
p∑
r=1

|SLi|∑
l1=1

|SLj |∑
l2=1

tli∑
t1=tsi

tlj∑
t2=tsj

Xil1rt1 ∗Xjl2rt2

It may be noted that in the above equation, Yij = 1 when both the predecessor (Ti) and
successor (Tj) task nodes are assigned to the same processor Pr. Otherwise, Yij = 0.

4.3.4 Linearization of Non-linear Term

As, Xil1rt1 and Xjl2rt2 are binary decision variables, we linearize their multiplication
by introducing another binary decision variable Uijl1l2rt1t2 (= Xil1rt1 ∗Xjl2rt2) as shown
below:

Yij =
p∑
r=1

|SLi|∑
l1=1

|SLj |∑
l2=1

tli∑
t1=tsi

tlj∑
t2=tsj

Uijl1l2rt1t2 (4.4)

Now, the non-linear variables Uijl1l2rt1t2 can be linearized using the following four
inequalities.

Xil1rt1 > Uijl1l2rt1t2 (4.5)

Xjl2rt2 > Uijl1l2rt1t2 (4.6)

Uijl1l2rt1t2 > Xil1rt1 +Xjl2rt2 − 1 (4.7)

75

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

Uijl1l2rt1t2 ∈ {0, 1} (4.8)

4.3.5 Deadline Constraint

All task nodes in the PTG have to complete its execution within the deadline D. It can
be noted that, this constraint can be satisfied, if all task nodes with out-degree zero,
finishes before deadline of the PTG. The constraint can be written as:
∀Ti | outdeg(Ti) = 0

|SLi|∑
l=1

p∑
r=1

tli∑
t=tsi

(t+ eilr − 1) ∗Xilrt 6 D (4.9)

4.3.6 Objective Function

Our objective is to maximize the overall system reward (QoS) while satisfying the schedu-
lability constraints. The objective function can be written as:

Maximize
n∑
i=1

|SLi|∑
l=1

p∑
r=1

tli∑
t=tsi

Xilrt ∗QoSil (4.10)

subject to constraints presented in Equations 4.1 - 4.9.

4.3.7 Complexity Analysis

The complexity of the proposed formulation ILP-SATC can be analyzed in terms of the
total number of constraints and the number of variables per constraint. Such an analysis
for ILP-SATC is presented in Table 4.3. The total complexity of ILP-SATC (in terms
of number of constraints) can be obtained as O(n + Dp + |E| + |E| × |SLi|2 × p×D2).
Considering |E| >> n, the total complexity becomes O(|E| × |SLi|2 × p×D2).

Example (contd.): Applying the ILP-SATC on our example PTG G (Figure 4.2), we
obtain the schedule represented through the gantt chart depicted in Figure 4.3. This
problem generates 6962 constraints and takes 2.56 seconds to solve using the CPLEX
optimizer [10]. It may be noted that the schedule assigns unique start times to all tasks

76

4.4 ILP Formulation: ILP-SANC

Constraint
Type

Equation
No. #Constraints

#Variables
Per

Constraint
Unique Start Time 4.1 O(n) O(|SLi| × p×D)
Resource 4.2 O(D × p) O(n× |SLi| ×D)
Dependency 4.3 O(|E|) O(|SLi|2 × p×D2)
Deadline 4.9 O(n) O(|SLi| × p×D)

Linearization
4.5 O(|E| × |SLi|2 × p×D2) O(1)
4.6 O(|E| × |SLi|2 × p×D2) O(1)
4.7 O(|E| × |SLi|2 × p×D2) O(1)

Table 4.3: Complexity of ILP-SATC

and satisfies resource bounds, dependency constraints and deadline. For example, task
T1 has been assigned with a service-level sl11, start time 0 and processor P2. Since,
tasks T1 and T2 have been scheduled on the same processor P2, their communication
cost is discarded. On the other hand, tasks T1 and T3 have been scheduled on different
processors. Subsequently, the execution of T3 starts after the output from T1 is commu-
nicated to P1. This communication incurs an overhead of 1 time unit. The total reward
obtained for the given PTG G is 31.

T3(sl3,2) T5(sl5,1)P1

T1(sl1,1) T2(sl2,2) T4(sl4,2) T6(sl6,1)P2
0 1 2 3 4 5 6 7 8 9 10

time
(ms)

Total Reward: 31

Figure 4.3: ILP-SATC: Schedule for G (in Figure 4.2) depicted as a gantt chart

4.4 ILP Formulation: ILP-SANC

It may be observed that the complexity of ILP-SATC presented in the earlier section
(Subsection 4.3.7) depends on the number of processors, the deadline and the number
of edges associated with a given PTG. In order to improve its scalability, we propose
an improved ILP formulation based on the non-overlapping approach [9] which sets

77

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

constraints and variables in such a way that no two tasks executing on the same processor
overlap in time. Further, the total number of constraints required to compute a schedule
for a PTG becomes independent of the deadline of a given PTG, which helps control
complexity of the proposed scheme.

Before presenting ILP-SANC, we first introduce the set of decision variables. Start
time of each task Ti is captured by an integer decision variable Si ∈ Z+. The formulation
also uses three sets of binary decision variables namely, Xir, Yil, and αij. Here, variables
Xir are used to capture task-to-processor mappings, variables Yil indicate task-to-service-
level mappings and variables αij are used to determine execution precedence order among
mutually independent task pairs. Variable Xir = 1, if task Ti is assigned onto processor
Pr; Xir = 0, otherwise. Variable Yil = 1, if task Ti executes at service-level slil; Yil = 0,
otherwise. Finally, variable αij = 1, if task Ti starts before task Tj; αij = 0, otherwise.
Now, we present the set of constraints on the decision variables as required to generate
feasible schedules for the given problem at hand.

4.4.1 Unique Resource Assignment:

Each task Ti must execute on a unique processor Pr.

∀i ∈ [1, n]
p∑
r=1

Xir = 1 (4.11)

4.4.2 Unique Quality-level Assignment:

A task Ti must be assigned to a distinct service-level slil.

∀i ∈ [1, n]
|SLi|∑
l=1

Yil = 1 (4.12)

4.4.3 Dependency Constraint:

Precedence-constraints between task pairs must be satisfied. For each directed edge
(Ti

mij−−→ Tj), the execution of Ti along with the transmission of its output message must
complete before Tj starts. The message communication cost is neglected if both Ti and
Tj are executed on the same processor.

78

4.4 ILP Formulation: ILP-SANC

∀Ti, Tj ∈ E | Ti ∈ pred(Tj) and Tj ∈ succ(Ti)

Si +
|SLi|∑
l=1

p∑
r=1

Uilr ∗ eilr + (1−
p∑
r=1

Zijr) ∗mij ≤ Sj (4.13)

where, Uilr = Yil ∗Xir and Zijr = Xir ∗Xjr. It can be seen that when both tasks Ti
and Tj executes on the same processor Pr, Zijr becomes 1, causing the term containing
mij to vanish. The term (Si +

∑|SLi|
l=1

∑p
r=1 Uilr ∗ eilr) captures the absolute finish time of

Ti at service-level slil when assigned on Pr.

4.4.4 Linearization of Non-linear Term

The non-linear terms Uilr = Yil ∗ Xir and Zijr = Xir ∗ Xjr in Equation 4.13 can be
linearized using constraints 4.14, 4.15, 4.16, 4.17 and constraints 4.18, 4.19, 4.20, 4.21,
respectively.

The non-linear term Uilr = Yil ∗ Xir in Equation 4.13 can be linearized using the
following four constraints,

Uilr ≤ Yil (4.14)

Uilr ≤ Xir (4.15)

Uilr ≥ Yil +Xir − 1 (4.16)

Uilr ∈ {0, 1} (4.17)

Similarly, the non-linear term Zijr = Xir ∗Xjr in Equation 4.13 can be linearized as
follows,

Zijr ≤ Xir (4.18)

Zijr ≤ Xjr (4.19)

Zijr ≥ Xir +Xjr − 1 (4.20)

79

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

Zijr ∈ {0, 1} (4.21)

4.4.5 Non-overlapping Constraints:

No two tasks Ti and Tj can be allocated onto the same processor such that their exe-
cution overlap in time. Pairs of tasks which are connected by edges in the PTG share
explicit precedence relationships, and the above mentioned dependency constraint nat-
urally enforces the non-overlapping property for them. For the rest of the mutually
independent task pairs, the non-overlapping constraint may be presented as:
∀Ti, Tj which do not share ancestor-descendant relationship (i = 1, . . . , n − 1; j =

i+ 1, . . . , n),

Si +
|SLi|∑
l=1

p∑
r=1

Uilr ∗ eilr − C ∗ (1− αij)− C ∗ (1−
p∑
r=1

Zijr) ≤ Sj (4.22)

Sj +
|SLj |∑
l=1

p∑
r=1

Ujlr ∗ ejlr − C ∗ αij − C ∗ (1−
p∑
r=1

Zijr) ≤ Si (4.23)

where, Uilr = Yil ∗Xir; Ujlr = Yjl ∗Xjr; Zijr = Xir ∗Xjr and C is a large constant.
Constraint 4.22 guarantees that task Ti always finishes before Tj starts ensuring

non-overlap. Constraint 4.23 enables this property for the case when Ti starts after
Tj. It may also be observed that when both tasks Ti and Tj are assigned to the same
processor Pr, the last term in the left hand side (LHS) of constraints 4.22 and 4.23
vanish. Otherwise, the constraint may be observed to be trivially satisfied due to the
presence of the large constant C. In the LHS of Equation 4.22, the second last term (i.e.,
C ∗ (1−αij)) vanishes for the case when αij = 1. Otherwise, the constraint gets trivially
satisfied due to the constant C. Similarly, when Ti starts after Tj, the term (C ∗ αij) in
Equation 4.23 vanishes, trivially satisfying the constraint. When Tj starts after Ti on
the same processor Pr (that is, Zijr = αij = 1), Constraint 4.22 enforces completion of
the execution of Ti before the commencement of Tj. We may consider similar arguments
for Constraint 4.23 as well.

80

4.4 ILP Formulation: ILP-SANC

4.4.6 Deadline Constraint:

All tasks must complete their execution on or before deadline D. This can be satisfied
by restricting the finish times of all sink nodes to be at most the deadline D.
∀Ti | outdeg(Ti) = 0

Si +
|SLi|∑
l=1

p∑
r=1

(Uilr ∗ eilr)− 1 ≤ D (4.24)

where, Uilr = Yil ∗Xir.

4.4.7 Objective Function

The goal of the formulation is to maximize the aggregate QoS acquired by the system
while ensuring that none of the above constraints are violated. The objective function
is as follows:

Maximize
n∑
i=1

|SLi|∑
l=1

(Yil ∗QoSil) (4.25)

subject to the constraints discussed above (in Equations 4.11 - 4.24).

4.4.8 Complexity Analysis

The complexity of the proposed formulation ILP-SANC can be analyzed in terms of the
total number of constraints and the number of variables per constraint. Such an analysis
for ILP-SANC is presented in Table 4.4. The total complexity of ILP-SANC (in terms
of number of constraints) can be obtained as O(n2 × |SLi| × p). It may be noted that
the complexity of ILP-SANC is independent of the deadline of a PTG.

Example (contd.): Applying ILP-SANC on G in Figure 4.2, the schedule shown in Fig-
ure 4.4 is obtained. The reward produced (31) is same as that obtained using ILP-SATC.
However, it is worth noting that ILP-SANC generates only 166 constraints and takes
0.82 secs to produce the solution. On the contrary, ILP-SATC produced 6962 constraints
and taken 2.56 seconds.

81

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

Constraint
Type

Equation
No. #Constraints

#Variables
Per

Constraint
Unique Resource 4.11 O(n) O(p)
Unique Quality-level 4.12 O(n) O(|SLi|)
Dependency 4.13 O(|E|) O(|SLi| × p)

Non-overlapping
4.22 O(n2) O(|SLi| × p)
4.23 O(n2) O(|SLi| × p)

Deadline 4.24 O(n) O(|SLi| × p)

Linearization

4.14 O(n2 × |SLi| × p) O(1)
4.15 O(n2 × |SLi| × p) O(1)
4.16 O(n2 × |SLi| × p) O(1)
4.18 O(n2 × p) O(1)
4.19 O(n2 × p) O(1)
4.20 O(n2 × p) O(1)

Table 4.4: Complexity of ILP-SANC

T3(sl3,2) T5(sl5,1)P1

T1(sl1,1) T2(sl2,2) T4(sl4,2) T6(sl6,1)P2
0 1 2 3 4 5 6 7 8 9 10

time
(ms)

Total Reward: 31

Figure 4.4: ILP-SANC: Schedule for G (in Figure 4.2) depicted as a gantt chart

4.5 Experimental Evaluation

In this section, we evaluate the performance of the proposed ILP formulation presented
in the earlier section.

Experimental Setup: The experiments have been conducted using benchmark
PTGs adopted from [1, 2, 60]. In particular, we considered two real-world applications
namely, Gaussian Elimination and Epigenomics. The PTG representation of Gaussian
Elimination and Epigenomics are shown in Figures 4.5a and 4.5b, respectively. For
the scheduling of these two PTGs on a heterogeneous distributed platform, we have
varied the following parameters: (1) Number of processors p = {2, 4, 6, 8}, (2) Com-

82

4.5 Experimental Evaluation

(a) (b)

Figure 4.5: (a) Gaussian Elimination [1], (b) Epigenomics [2]

munication to Computation Ratio CCR = {0.25, 0.5, 0.75, 1, 2} (CCR is the ratio of
the average communication cost to the average computation cost. That is, CCR =
1
|E|Σmij

/
(1
n×p [Σn

i=1Σp
r=1ei1r])). (3) Number of service-levels of each task Ti is taken as,

|SLi| = 3, (4) Execution time ei1r of each task node Ti at its base service-level for proces-
sor Pr, is taken randomly from a uniform distribution within the range 10 ms to 30 ms.
The execution time (eilr) for non-base service-levels (starting from level 2) of the tasks
are assigned uniform random values bounded between 110% and 130% of the execution
times (ei(l−1)r) corresponding to their immediately lower service-levels, (5) The rewards
(QoSil) for any task Ti, increase monotonically as service-levels become higher. The val-
ues of the rewards have been chosen randomly from the range 1 to 200, while ensuring
that the random reward value for a task at a given service-level is higher than the reward
values at lower service-levels. (6) Communication time mij corresponding to each edge
in the PTG has been generated from a uniform random distribution within the range
10 ms to 30 ms. The obtained communication times are then appropriately scaled to
maintain desired CCR, (7) Deadline for a PTG is obtained from the makespan outputs
computed by applying the list scheduling based heuristic scheme PEFT [1] on the given
PTG. In particular, we compute two makespan DL and DH by setting all task nodes at
their base and highest service-levels, respectively. Finally, the actual deadline D for the

83

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

PTG is randomly selected from a uniform distribution in the range [DL, DH]. All exper-
iments are carried-out using the CPLEX optimizer [10] version 12.6.2.0, executing on a
system having Intel(R) Xeon(R) CPU running Linux Kernel 3.10.0-693.21.1.el7.x86 64.

Performance Metrics: Four metrics have been used for evaluating the designed
ILP based scheduling strategies: (1) Normalized Reward: NR (in %) = RACT

RMAX
× 100,

where, RACT is the actually obtained reward and RMAX is the maximum possible reward
for the PTG. (2) Deadline extension Rate (DR) determines the extended deadline of a
given PTG as: D = DL + ((DH −DL)×DR), where DR ∈ {0, 0.25, 0.5, 0.75, 1.0}. For
example, the different extended deadlines corresponding to various values of DR for a
PTG with DL = 20 and DH = 40 are 20, 25, 30, 35, 40. (3) Running time (in seconds):
Total time taken to compute the solution for a given PTG. (4) Percentage of tasks
upgraded: Given a PTG and an input x (∈ {0, 25, 50, 75, 100}), we have selected x% of
task nodes in the PTG and upgraded them to their highest service-levels. Specifically,
x% of the tasks which have the highest reward per unit execution time (RPE) values
have been chosen for service-level enhancement. Here, RPE of a task Ti is defined as the
ratio of the difference in reward to the difference in execution time, when Ti is upgraded
to the highest service-level from its base level.

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

#Processor = 2
#Processor = 4
#Processor = 6
#Processor = 8

(a) Gaussian Elimination

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

#Processor = 2
#Processor = 4
#Processor = 6
#Processor = 8

(b) Epigenomics

Figure 4.6: Effect of varying processors.

Experiment-1: Varying the number of processors: In this experiment, we vary

84

4.5 Experimental Evaluation

the number of processors (p) from 2 to 8, while fixing CCR to 0.5. Figure 4.6 depicts the
results for this experiment. It may be noted that for any given deadline, the normalized
reward NR increases as the number of processors becomes higher. This happens because
the residual system capacity increases with increasing #processors and this capacity is
utilized by the system in order to enhance task service-levels, resulting in higher NR
values. For example, in Gaussian Elimination PTG with DR = 0.25 (Figure 4.6a), NR
values for p = 2 and p = 6 are ∼ 87% and ∼ 90%, respectively.

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

CCR = 0.25
CCR = 0.5

CCR = 0.75
CCR = 1
CCR = 2

(a) Gaussian Elimination

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

CCR = 0.25
CCR = 0.5

CCR = 0.75
CCR = 1
CCR = 2

(b) Epigenomics

Figure 4.7: Effect of varying CCR

Experiment-2: Varying CCR: We vary CCR from 0.25 to 2, while fixing p to
2. Figure 4.7 depicts the results for this experiment. For fixed values of p, n and D,
higher values of CCR imply lower computation demands of the task nodes on processor
resources at any service-level. Such lower computation demands in turn, naturally en-
hances the possibility of task service-level upgradation. Consequently, this leads to an
increase in the obtained rewards, NR. For example, in Epigenomics PTG with DR =
0.25 (Figure 4.7b), the normalized rewards obtained for CCR = 0.25 and CCR = 2 are
∼ 86% and ∼ 96%, respectively.

Experiment-3: Comparing ILP-SATC and ILP-SANC: We set p to 2 and
CCR to 0.5. The total amount of time taken by both ILP-SATC and ILP-SANC,
when the deadline is varied from DL to DH , is shown in the Table 4.5. Observing the

85

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

PTG ILP Version
Deadline Extension Rate

0 0.25 0.5 0.75 1

Gaussian
Elimination

ILP-SATC 16m:30s 2h:46m:43s @ @ @
ILP-SANC 2.6s 2.7s 1.6s 0.6s 0.4s

Epigenomics
ILP-SATC @ @ @ @ @
ILP-SANC 45.7s 55s 23.1s 2.3s 0.4s

Table 4.5: Running time of ILP-SATC and ILP-SANC. The symbol @ represents running
times greater than 24 hours

results obtained for the Gaussian Elimination application, it may be clearly seen that
run-times for ILP-SATC significantly increases with larger deadlines. This indicates
ILP-SATC’s strong dependence on the value of the deadline considered. On the other
hand ILP-SANC exhibits drastically lower run-times for all cases.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Percentage of Tasks Upgraded

ILP-SANC
PEFT

(a) Gaussian Elimination

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Percentage of Tasks Upgraded

ILP-SANC
PEFT

(b) Epigenomics

Figure 4.8: Comparison with PEFT [1]

Experiment-4: Comparison with the state-of-the-art: This experiment com-
pares ILP-SANC against the list based heuristic scheduling algorithm PEFT [1]. The
essential objective of PEFT is to minimize makespan corresponding to a task graph in
which all tasks have only a single service-level. Therefore, as PEFT is task service-level
oblivious, in order to apply PEFT within our framework, service-levels of all tasks must
be fixed before its application. After assigning selected service-levels to task nodes,

86

4.6 Case Study: Adaptive Cruise Controller

PEFT is run on the PTG and the resulting normalized reward NR and makespan val-
ues are noted. ILP-SANC is then executed on the same PTG with the makespan value
delivered by PEFT, as deadline. To improve normalized reward values for PEFT, we
have selectively chosen higher service-levels for those tasks which deliver higher reward
gains with respect to additional execution time consumed; that is, tasks with larger
RPE values have greater priorities towards higher service-level assignment. The exper-
imental results are depicted in Figure 4.8. It may be observed that our proposed ILP
based scheme is able to achieve higher normalized rewards compared to PEFT for any
given deadline bound, unless the deadline is so relaxed that PEFT is also able to assign
highest service-levels to all tasks.

4.6 Case Study: Adaptive Cruise Controller

To illustrate the generic applicability of our proposed strategy to real world designs, we
present a case study using an Adaptive Cruise Controller (ACC) application present in
automotive systems. ACC automatically maintains a safe distance between two cars [5].
Figure 4.9a shows the block diagram of ACC adopted from [3] and Figure 4.9b depicts its
corresponding PTG representation. The PTG consists of 20 task nodes {T1, T2, . . . , T20}.
We assume that this PTG is to be scheduled on a distributed platform consisting of three
heterogeneous processors {P1, P2, P3}. The computation times of the task nodes for the
given heterogeneous platform are listed in Table 4.6. We assume the deadline to be
150 ms.

We have employed ILP-SANC to compute a schedule that maximizes overall achiev-
able reward for the PTG in Figure 4.9b. Implementation of ILP-SANC using the CPLEX
optimizer takes ∼ 13.42 secs to produce the solution. It may be noted that ILP-SATC
implemented using CPLEX is unable to produce a solution for the same PTG within our
stipulated time cap of 24 hours. A gantt chart representation of the resulting schedule
is shown in Figure 4.10. The observations may be summarized as follows:

• Overall reward for the final schedule is 1954.

87

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

Left-rear
wheel speed

Left-front
wheel speed

Right-rear
wheel speed

Right-front
wheel speed

Current
Speed

Object distance
and speed

Yaw
rate

Current throttle
position

Desired
speed Lateral

acceleration
Hand-wheel

position Road-wheel
force

Desired throttle
position

Desired braking
force

Desired hand-
wheel angle Desired hand-

wheel effort

Actuate
throttle

Actuate
brakes

Actuate steering-
rack motor

Force feedback
to driver

Sensing
Nodes
Computing

Nodes

15
0

m
s

(a)

T1 T2 T3 T4

T5 T6 T7

T8 T9 T10 T11 T12

T13 T14 T15 T16

T17 T18 T19 T20

15
9

5
12 5

9
10

12

6 13 13

8 12 12 12 14 13 11 7

13 11 6 15 8

15
0

m
s

(b)

Figure 4.9: ACC application’s (a) Block Diagram [3], (b) PTG representation

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

sli1

P1 25 16 19 10 27 30 15 29 12 28 21 24 21 10 20 25 18 19 18 10
P2 23 14 30 25 16 13 30 30 22 17 12 25 26 14 21 24 26 17 19 18
P3 25 21 23 29 13 28 22 12 30 20 16 21 30 10 25 16 30 29 30 14

QoSi1 10 35 13 10 14 6 67 58 17 15 35 7 43 72 23 6 25 45 51 4

sli2

P1 - - - - 33 - 16 - 13 - - - 24 12 23 28 20 23 19 12
P2 - - - - 20 - 33 - 24 - - - 30 17 24 27 29 21 21 23
P3 - - - - 16 - 24 - 33 - - - 35 12 29 18 34 36 33 18

QoSi2 - - - - 85 - 114 - 174 - - - 82 120 98 90 53 86 135 95

sli3

P1 - - - - 39 - 20 - 15 - - - 28 13 29 31 22 25 23 13
P2 - - - - 24 - 42 - 29 - - - 36 19 30 29 32 23 25 25
P3 - - - - 19 - 30 - 40 - - - 42 13 37 19 37 39 40 20

QoSi3 - - - - 146 - 181 - 186 - - - 158 195 182 175 196 102 144 100

Table 4.6: Computation time (in ms) of task nodes

• Avoidance of message transmission time: Messages are not transmitted when a
task node is scheduled on the same processor as its successor task node. For
example, it may be observed that the message transmission time of 8 ms between
T16 and T20 is avoided since both of them are assigned on processor P3.

88

4.7 Summary

T13(sl13,3) T17(sl17,3)T9(sl9,3)T10(sl10,1) T12(sl12,1)T3(sl3,1)T4(sl4,1)P1

T15(sl15,3) T18(sl18,3)T19(sl19,3)T11(sl11,1)T2(sl2,1) T6(sl6,1) T8(sl8,1)P2

T14(sl14,3) T16(sl16,3) T20(sl20,3)T5(sl5,3) T7(sl7,3)T1(sl1,1)P3
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

time
(ms)

Figure 4.10: Gantt chart representation of the schedule for the PTG (in Figure 4.9b)

• Correct satisfaction of all constraints: It can be seen from the schedule that, (i) all
nodes have a unique start time, (ii) each node is assigned with a distinct service-
level, (iii) resource bounds are satisfied at all time instants, and (iv) dependency
constraints among nodes have been respected. For example, task T7 starts its exe-
cution at time instant 68 ms with service-level 3, on processor P3. While executing
T7, P3 does not allow the execution of any other task on it, thus respecting resource
constraints. On the completion of T7, its successor task node T14 is also scheduled
on P3. Since, T7 and T14 are scheduled on the same processor, the communication
overhead of 13 ms has been avoided.

• Modeling Heterogeneity: Each node in the PTG has consumed distinct amounts of
time depending on the resource on which it is assigned. For example, task T2 has
taken 14 ms because it has been assigned on P2.

4.7 Summary

In this chapter, we have considered the problem of computing optimal schedules for
PTGs with multiple service-levels, executing on fully-connected distributed systems
consisting of heterogeneous processors. The scheduler construction methodology uses
Integer Linear Programming as the underlying solution technique. Two distinct solution
strategies ILP-SATC and ILP-SANC have been proposed. ILP-SATC is based on the
explicit manipulation of the mobilities of task nodes between their earliest and latest
start times. On the other hand, the solution strategy proposed in ILP-SANC ensures
that the executions of no two tasks overlap in time on the same processor, instead of
explicitly relying on task mobility based manipulations. We have shown that the strat-

89

4. OPTIMAL SCHEDULING OF PTGS ON HETEROGENEOUS
DISTRIBUTED SYSTEMS

egy followed in ILP-SANC is able to significantly reduce the number of constraints and
variables that are required by the formulation and this results in a drastic improvement
in scalability. An extensive set of simulation based experiments have been conducted
to evaluate the performance of the two ILPs. The solution strategies have also been
compared with a state-of-the-art scheme [1]. Finally, a case study on a Adaptive Cruise
Controller (ACC) application has been presented. In the next chapter, we present
heuristic scheduling mechanisms for the same problem as discussed in this chapter.

90

Chapter 5
Heuristic PTG Scheduling Strategies on
Heterogeneous Distributed Systems

The previous chapter deals with the optimal scheduling mechanism of a real-time system
modeled as PTG executing on a fully connected distributed heterogeneous platform. Two
distinct ILP based solution strategies ILP-SATC and ILP-SANC have been proposed.
Though ILP-SANC shows appreciable improvements in terms of scalability over the
ILP-SATC, it still suffers from high computational overheads (in terms of running time)
as the number of nodes in a PTG and/or the number of resources, increase. Therefore in
this chapter, two low-overhead heuristic algorithms namely, G-SAQA and T-SAQA, are
proposed for the same problem as discussed in the previous chapter (Chapter 4). The
base-line heuristic, G-SAQA, is faster but returns moderately good solutions. T-SAQA
extends G-SAQA and deliver significantly better solution, albeit at the cost of slightly
higher time complexity. Then, both the heuristic schemes have been comprehensively
evaluated through an extensive set of experiments over benchmark PTGs as well as
using randomly generated PTGs. Finally, we demonstrate the practical applicability of
the G-SAQA and T-SAQA using a real-world case study on a Traction Controller (TC)
application and conclude the chapter.

5.1 The Task and Platform Models

The Task and Platform Models discussed in Section 4.1 of Chapter 4 are re-introduced
here in Section 5.1 for better readability.

91

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

This work considers a periodic application represented as a PTG G = (T,E) to
be executed on a fully-connected heterogeneous multiprocessor platform consisting of a
set of processors P = {P1, P2, . . . , Pp}. Figure 5.1 shows the pictorial representation
of the fully-connected heterogeneous multiprocessor platform as considered here. Each
processor has its own private memory. For any given processor, task execution and
communication with other processors can be conducted simultaneously, without any
contention. Specifically, we assume that tasks on different processors communicate by
transmitting data from the source processor via the fully-connected network to the local
memory of the receiving processor. On the other hand, intra-processor communication
is realized through the reading and writing of variables stored in the local memory of
the processor.

Processing
Element P1

Processing
Element P2

Processing
Element P3

Processing
Element P4

Figure 5.1: Fully connected multiprocessor system

• T = {T1, T2, . . . , Tn} represents n task nodes.

• E ⊆ T×T denotes the edge-set that describes precedence-constraints between pairs
of tasks in T . The symbol mij is used to denote the communication cost associated
with the edge Ti −→ Tj; mij = 0, when Ti and Tj are assigned to the same processor.
All tasks/messages in PTG G execute/transmit non-preemptively.

• Each task Ti has SLi = {sli1, sli2, . . . , sli|SLi|} alternative service-levels. Associated
with a given service-level slil of task Ti, there exists p possibly distinct worst-case
execution times eilr (i ∈ [1, n], l ∈ [1, |SLi|], r ∈ [1, p]) corresponding to the p
heterogeneous processors. There is a reward QoSil which is obtained on successful
completion of every instance of Ti.

92

5.1 The Task and Platform Models

• Given any two service-levels slil and slil′ of task Ti such that l < l′, the execution
times on any processor Pr are related as eilr ≤ eil′r. However, the processors
being heterogeneous, the execution times of a task on two different processors are
completely unrelated.

• The execution times of a task Ti on processor Pr for all service-levels is set to ∞,
to model the scenario in which the execution of Ti is infeasible on Pr.

• Each instance of application G has an associated deadline D. Two consecutive
instances of G are separated by a period π. We assume the deadline to be implicit,
i.e., D = π.

To denote in-degree and out-degree of the task node Ti, we use the notations indeg(Ti)
and outdeg(Ti), respectively. Given a pair of task nodes 〈Ti, Tj〉, Ti (Tj) is said to be
the predecessor (successor) of Tj (Ti) if there is an edge (Ti → Tj) form Ti to Tj. To
denote predecessor and successor of the task node Ti, we use the notations pred(Ti) and
succ(Ti), respectively. Similarly, given two tasks Ti and Tj, Ti (Tj) is said to be the
ancestor (descendant) of Tj (Ti), if Ti ≺ Tj i.e., there exists a path from Ti to Tj, in the
PTG.
Example: An example of a PTG G and its task parameters are shown in Figure 5.2
and Table 5.1, respectively. PTG G consists of 7 tasks, each task having 2 service-
levels. Each task Ti may have distinct execution times eilr on each processor Pr for
any given service-level slil along with associated reward QoSil. For example, at service-
level sl11, task T1 has execution times e111 = 3 and e112 = 1 on processors P1 and P2,
respectively, and an associated QoS11 = 2. An edge between T1 and T2 has an associated
communication cost of 1.
Problem Statement: Generate a real-time schedule consisting of a feasible processor
assignment, service-level and start time for each task node of a given PTG having a
stipulated end-to-end deadline, such that the total QoS acquired by the system is maxi-
mized while ensuring that deadline, precedence and resource constraints are not violated
on a fully-connected heterogeneous multiprocessor platform.

93

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

T1

T3T2 T4

T5

T6

T7

1 1 3

1

3

11

2

D
=

13

Figure 5.2: Example of a PTG G

Task SLi
eilr

QoSil
P1 P2

T1
sl11 3 1 2
sl12 4 2 4

T2
sl21 1 2 1
sl22 4 3 9

T3
sl31 4 3 2
sl32 5 5 5

T4
sl41 4 3 3
sl42 6 4 7

T5
sl51 3 4 1
sl52 5 6 4

T6
sl61 1 4 1
sl62 3 7 4

T7
sl71 3 2 2
sl72 4 3 3

Table 5.1: Values of tasks in Figure 5.2

5.2 Heuristic Algorithms

Typically, list scheduling based heuristic techniques have been employed to compute
feasible schedules for PTGs executing on heterogeneous platforms. Some examples of
this class of techniques include the HEFT [6], PEFT [1] and HSV [11] algorithms. They
attempt to construct a static-schedule for the given PTG with the objective of minimizing
the overall schedule length, while satisfying resource and precedence constraints. On the
contrary, our work deals with the problem of scheduling PTGs consisting of task nodes
with multiple service-levels, with the objective of maximizing overall system level reward,
while satisfying the deadline constraint associated with a given application. For this
purpose, we devise two distinct types of heuristic algorithms namely, (i) G-SAQA and
(ii) T-SAQA. While the solution qualities delivered by T-SAQA is at least as good as
G-SAQA, the computational overheads associated with T-SAQA is significantly higher
than G-SAQA. Both G-SAQA and T-SAQA internally make use of PEFT, a recent
state-of-the-art algorithm, to compute a baseline schedule by setting all task nodes at
their base service-level. Since PEFT attempts to minimize schedule length, the resulting

94

5.2 Heuristic Algorithms

schedule length may be marked by unutilized slack time before deadline. This slack may
then be used to upgrade service-levels of task nodes. In the next subsection, we discuss
the details of G-SAQA.

5.2.1 Global Slack Aware Quality-level Allocator (G-SAQA)

Algorithm 2 depicts a step-wise description of G-SAQA. The G-SAQA algorithm starts
by using PEFT to compute task-to-processor mappings as well as start and finish times
of tasks, based on task execution times associated with their base service-levels (line
nos. 1 to 3). If length of the obtained PEFT schedule violates deadline, then the
algorithm terminates as generation of a feasible schedule is not possible (line nos. 4 to 6).
Otherwise, the available global slack (slackg = Deadline − PEFT makespan) is used to
enhance the tasks’ assigned service-levels in an endeavour to maximize achievable reward
while retaining task-to-processor mappings as provided by PEFT. For this purpose, we
first construct an assignment PTG G′ corresponding to G. First, G′ has the same node
set as G and also retains all edges in G. In addition, each node Ti ∈ G′ is labeled with
information related to its processor assignment, start time and finish time, as provided
by the PEFT schedule (line no. 7). Further, if two mutually independent tasks Ti and
Tj are scheduled on the same processor Pr, and Tj is scheduled immediately after Ti on
Pr, then an edge Ti

mij=0−−−→ Tj is introduced in the assignment PTG G′ (line nos. 8 to
10). This edge has been added to ensure that the execution of tasks assigned on Pr do
not get overlapped as a side-effect of service-level upgradation.

Now, the available global slack (slackg) needs to be distributed among task nodes
in the PTG to upgrade their service-levels, such that the overall reward is maximized.
This upgradation happens in a service-level by service-level manner, starting with all
tasks situated at their base service-levels. At each step, the most eligible task is selected
(from the task set) for service-level upgradation by one. The selection of this task is
based on a prioritization key called, costi which is defined as follows (line nos. 12 to 13):

costi = QoSi(l+1) −QoSil
ei(l+1)r − eilr

(5.1)

95

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

Here for any given task Ti, costi is defined as the additional reward received by the
system per unit additional consumed resource (w.r.t. service-level upgradation from slil

to sli(l+1)) while adhering to the mapping provided by the PEFT schedule. To select a
node that gives maximum reward (by utilizing the available slack) among all nodes in the
PTG, G-SAQA creates a max-heap of tasks using costi as the key (line no. 13). Then,
G-SAQA proceeds by repeatedly extracting the task (say, Ti) at the root of the heap.
After extraction, G-SAQA checks whether it is possible to upgrade Ti’s service-level by
utilizing the available global slack slackg. If the check results in success, Ti’s service-
level is incremented by 1 and the available slack time is decremented by the additional
resource consumed by Ti (line nos. 18 to 20). To adjust for the additional execution time
required at the enhanced service-level of Ti, G-SAQA recursively updates the start times
of all successor task nodes of Ti. If task Ti has not yet reached its maximum service-level,
then its key costi is updated and reinserted into the max-heap. This process continues
either until all tasks have reached their maximum service-levels, or the available global
slack is completely exhausted (line nos. 15 to 23).

Time Complexity of G-SAQA: Assignment of base service-levels to tasks takes O(n)
iterations (line nos. 1 to 2). Next, the complexity of computing a PEFT schedule is
O(n2×p) (line no. 3) [1]. Construction of the assignment PTG G′ from G and the PEFT
schedule takesO(n+|E|) time (line no. 7). The overhead of adding dummy edges between
mutually independent task pairs (Ti, Tj) in G′ is O(n2) (line nos. 8 to 10). Computation
overheads associated with the calculation of slackg (line no. 11) and costi for all tasks
(line nos. 12 to 13) are O(1) and O(n), respectively. Formation of the initial max-heap
takes O(n). The service-level upgradation process takes O(∑n

i=1 |SLi|×n× log(n)) (line
nos. 15 to 23) and this includes O(n) required for updating the start and finish times
of all descendant nodes of Ti (line no. 21). Hence, the time complexity of the G-SAQA
algorithm is O(max{(∑n

i=1 |SLi| × n× log(n)), (n2 × p)}).

Example (contd.): The PEFT schedule of the PTG G in Figure 5.2 is shown in Ta-
ble 5.2. The makespan of the PEFT schedule is 11 units (≤ 13 units; slackg = 2
units). From the given PEFT schedule, it can be seen that mutually independent tasks

96

5.2 Heuristic Algorithms

ALGORITHM 2: G-SAQA
Input: A PTG consisting of n tasks, p fully-connected heterogeneous processors
Output: A feasible task schedule that maximizes system level reward

1 forall tasks Ti do
2 Assign minimum service-level sli1 to Ti
3 Compute a PEFT schedule to determine start time, finish time and processor

mapping of each task
4 if PEFT makespan violates the deadline constraint D then
5 Declare “generation of a feasible schedule is not possible”
6 return
7 Construct assignment PTG G′ from the original PTG G using PEFT schedule
8 forall mutually independent task pairs (Ti, Tj) do
9 if Ti and Tj are scheduled on the same processor Pr then

10 Add an edge Ti
mij=0−−−→ Tj in G′, if Tj is scheduled immediately after Ti

on Pr and vice versa
11 Compute global slack, slackg = Deadline − PEFT makespan
12 forall tasks Ti do
13 Compute costi using Equation 5.1
14 Make max-heap of tasks using costi as key
15 while max-heap is non-empty do
16 Remove root node Ti to possibly upgrade its service-level
17 Compute additional computation demand: ∆ei ← ei(l+1)r − eilr
18 if ∆ei ≤ slackg then
19 Upgrade service-level of Ti from slil to sli(l+1)
20 Update the available global slack: slackg ← slackg −∆ei
21 Update start and finish times of all descendant nodes of Ti by ∆ei
22 if current service-level < |SLi| then
23 Compute costi (Equation 5.1) and reinsert Ti into the max-heap

T3 and T4 are mapped onto the same processor P2 and the execution of T4 immedi-
ately succeeds T3. Hence, a zero weighted edge from T3 to T4 is added in G′ (Fig-
ure 5.3). The initial values of costi corresponding to the seven tasks are as follows:
cost1 = 2, cost2 = 2.67, cost3 = 1.5, cost4 = 4, cost5 = 1.5, cost6 = 1.5 and cost7 = 1. A
max-heap is built using these key values. The task T4 with the highest key value (cur-
rently, at the root of the max-heap) is extracted from the heap and its service-level is
enhanced from sl41 to sl42 as the additional computation requirement, ∆e4 = 4− 3 = 1,
can be satisfied by the available global slack, slackg = 2. The global slack time is decre-
mented to slackg = slackg −∆e4 = 2 − 1 = 1, and the start time of the successor task

97

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

T1

T3T2 T4

T5

T6

T7

1 0 0

0

3

10

0

0

Figure 5.3: Assignment PTG G′ obtained
from PTG G and the PEFT schedule

Task
(Ti)

Start time
(Si)

Finish time
(Fi) Ti to Pr

T1 0 1 P2

T2 2 3 P1

T3 1 4 P2

T4 4 7 P2

T5 3 6 P1

T6 7 8 P1

T7 8 11 P1

Table 5.2: PEFT schedule of the PTG in Fig-
ure 5.2

node T7 is increased by ∆e4 i.e., S7 = S7 + ∆C4 = 8 + 1 = 9. Since T4 has reached to
its highest service-level, it is not reinserted back into the heap.

Next T2, the task with the highest key, is extracted from the heap but its service-level
is not enhanced as, the available global slack, slackg = 1 cannot fulfill the additional
computation requirement, ∆e2 = 4 − 1 = 3 and T2 is not reinserted into the heap.
Next T1, the task with the highest key, is extracted from the heap and its service-level
is enhanced from sl11 to sl12, since ∆e1 = 2 − 1 = 1 is less than equal slackg = 1.
Subsequently, the global slack is updated as, slackg = slackg −∆e1 = 1− 1 = 0 and the
start times of all successor nodes T2 to T7 are increased by ∆e1. Thus, the updated start
times become, S2 = 3, S3 = 2, S4 = 5, S5 = 4, S6 = 8 and S7 = 10. It may be observed
that as a result of T1’s quality enhancement, the global slack gets exhausted to 0 and
hence, the algorithm terminates. The gantt chart representation of the final schedule is
given in Figure 5.4. The aggregate reward returned by G-SAQA is 18. �

T2(sl2,1) T5(sl5,1) T6(sl6,1) T7(sl7,1)P1

T1(sl1,2) T3(sl3,1) T4(sl4,2)P2
0 1 2 3 4 5 6 7 8 9 10 11 12 13

time
(ms)Total Reward: 18

Figure 5.4: G-SAQA: Gantt chart representation of the schedule for G

Though G-SAQA follows an intuitive design flow, it only considers global slack (=

98

5.2 Heuristic Algorithms

deadline − PEFT makespan) to upgrade service-levels of tasks in the PTG. However,
a closer look at the PEFT schedule reveals that there exists gap within the scheduled
nodes of the PTG which could be used along with the global slack to achieve better
performance in terms of service-levels and delivered rewards compared to G-SAQA.
It may also be possible to consolidate multiple small gaps within the PEFT schedule
into larger consolidated slack which may be used to further improve performance in
terms of achieved rewards. Therefore, the total slack available with a task at any given
time comprises of the global slack along with the maximum consolidated inter-node gap
between the task and its successor on its assigned processor in the PEFT schedule. This
total slack associated with a task Ti in PTG G at any given time, can be computed by
finding the difference between the earliest (ASAP) and latest (ALAP) time instants at
which Ti’s execution can be started while adhering to the resource-mapping provided
by PEFT. In Section 4.2 of Chapter 4, we have shown the ASAP/ALAP computation
procedure for tasks. Here we present an extension of this procedure. Unlike Chapter 4
where task-to-processor mapping was unknown, in this section we conduct resource-
aware ASAP/ALAP computation. The detailed steps required for the computation of
the total slack slacki associated with each task Ti is as follows:
Resource aware ASAP time computation procedure:

1. For source nodes Ti (∀Ti|indeg(Ti) = 0), set ASAP time as, tsi = 0.

2. ASAP times for the remaining task nodes Ti are recursively determined as follows:

tsi = max
Tj∈pred(Ti)

(tsj + ejlr +mji)

where, pred(Ti) is the set of predecessors of task node Ti and ejlr is the execution
time of task Tj at service-level sljl on processor Pr (Tj is assigned on processor Pr
by PEFT).

Resource aware ALAP time computation procedure:

1. For sink nodes Ti (∀Ti|outdeg(Ti) = 0), set ALAP time of Ti as, tli = D − eilr

99

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

2. ALAP times for the remaining task nodes Ti are recursively determined as follows:

tli = min
Tj∈succ(Ti)

(tlj − eilr −mij)

where, succ(Ti) is the set of successors of task node Ti and eilr is the execution
time of task Ti at service-level slil on processor Pr (Ti is assigned on processor Pr
by PEFT).

Slack time computation: The total slack of task Ti (while adhering to the mapping
provided by the PEFT schedule) is computed as,

slacki = tli − tsi (5.2)

With the above insights on the total task-level slacks available in a PTG, we propose
another heuristic namely, T-SAQA with the objective of achieving better performance
compared to G-SAQA. The details of T-SAQA is presented in the following subsection.

5.2.2 Total Slack Aware Quality-level Allocator (T-SAQA)

Algorithm 3 depicts a step-wise description of T-SAQA. The basic structure of T-SAQA
is the same as that of the G-SAQA algorithm. Specifically similar to G-SAQA, T-SAQA
(line nos. 1 to 18) also performs the steps, (i) Computation of the PEFT schedule
for PTG G, (ii) construction of assignment PTG G′, (iii) formation of max-heap using
costi as the key, and (iv) service-level upgradation of task node Ti. However, T-SAQA
differs from G-SAQA in the way it updates the start times of Ti’s descendants and
slacks associated with the task nodes in G′. In particular, G-SAQA uniformly delays
the start times of all descendant nodes of Ti and reduces the global slack value by the
same amount. In this regard, it may be emphasized that T-SAQA works with distinct
total slack values (slacki) associated with the task nodes (Ti) in G′, instead of using a
single global slack pool. By harnessing the total slacks available with individual task
nodes, T-SAQA updates the start and finish times of only those descendant task nodes
of Ti, whose start times are impacted due to the service-level upgradation of Ti. If
task Ti has not reached its maximum service-level, then its key costi is updated and

100

5.2 Heuristic Algorithms

Ti reinserted into the max-heap. Finally, the total slack slacki associated with each
task gets updated (refer Equation 5.2). This process continues either until all tasks
have reached their maximum service-levels, or there exists no task whose total slack is
sufficient to effect a service-level enhancement (line nos. 14 to 32). Algorithm 3 depicts
a step-wise description of T-SAQA.

Time Complexity of T-SAQA: The complexity of T-SAQA differs from G-SAQA
due to differences in the service-level upgradation process. Specifically, the upgradation
process takes O(∑n

i=1 |SLi|× log(n)) in G-SAQA whereas T-SAQA takes O(∑n
i=1 |SLi|×

log(n) × (n + |E|)), since ASAP and ALAP times need to be recomputed for all task
nodes in G′ after each upgradation (line nos. 14 to 32). Hence, the time complexity of
the T-SAQA algorithm is O(max{(∑n

i=1 |SLi| × log(n)× (n+ |E|)), (n2 × p)}).

Example (contd.): As we have discussed earlier, the PEFT schedule (Table 5.2) and
assignment PTG G′ (Figure 5.3) generation steps for T-SAQA is same as that of
G-SAQA. The initial values of slacki and costi corresponding to the seven tasks are
as follows: slack1 = slack3 = slack4 = slack6 = slack7 = 2, slack2 = slack5 = 3 and
cost1 = 2, cost2 = 2.67, cost3 = cost5 = cost6 = 1.5, cost4 = 4, cost7 = 1. Similar to
G-SAQA, using these costi values as keys, a max-heap is built. The task T4 with the
highest key value (currently, at the root of the max-heap) is extracted from the heap and
the service-level is enhanced from sl41 to sl42, as the additional computation requirement
∆e4 = 4−3 = 1, can be satisfied by the available slack, slack4 = 2. The finish time of T4

becomes, S4 +e422 = 4+4 = 8. Now, with respect to the finish time of T4, the start time
of the successor task T7 becomes F4 + m47 = 8 + 1 = 9. As the newly computed start
time of T7 is larger than the current start time of T7, S7 is modified to S7 = 9. Since T4

has reached its highest service-level, it is not reinserted into the heap. The slack times
of all tasks are recomputed using Equation 5.2 (slack1 = slack3 = slack7 = 1, slack2 =
slack5 = 3, slack6 = 2).

Next T2, the task with the highest key, is extracted from the heap and the service-
level is upgraded from sl21 to sl22. Consequently, F2 becomes 6 and start times of
all successor tasks are updated to, S5 = 6, S6 = 9, S7 = 10. As task T2 has reached its

101

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

ALGORITHM 3: T-SAQA
Input: A PTG consisting of n tasks, p fully-connected heterogeneous processors
Output: A feasible task schedule that maximizes system level reward

1 forall tasks Ti do
2 Assign minimum service-level sli1 to Ti
3 Compute a PEFT schedule to determine start time, finish time and processor

mapping of each task
4 if PEFT makespan violates the deadline constraint D then
5 Declare “generation of a feasible schedule is not possible”
6 return
7 Construct assignment PTG G′ from the original PTG G using PEFT schedule
8 forall mutually independent task pairs (Ti, Tj) do
9 if Ti and Tj are scheduled on the same processor Pr then

10 Add an edge Ti
mij=0−−−→ Tj in G′, if Tj is scheduled immediately after Ti

on Pr and vice versa
11 forall tasks Ti do
12 Compute costi and slacki using Equations 5.1 and 5.2, respectively
13 Make max-heap of tasks using costi as key
14 while max-heap is non-empty do
15 Remove root node Ti to upgrade its service-level
16 Compute additional computation demand: ∆ei ← ei(l+1)r − eilr
17 if ∆ei ≤ slacki then
18 Upgrade service-level of Ti from slil to sli(l+1)
19 Update finish time of Ti: Fi ← Si + ei(l+1)r
20 Create an empty successor task list, SuccList and add Ti to it
21 while SuccList is non-empty do
22 Remove the front task node (say, Ti′) from SuccList
23 forall children Tj of Ti′ do
24 if Sj < Fi′ +mi′j then
25 Update start time of Tj: Sj ← Fi′ +mi′j

26 Update finish time of Tj: Fj ← Sj + ejlr
27 Add Tj to SuccList

28 if current service-level < |SLi| then
29 Compute costi (Equation 5.1) and reinsert Ti into the max-heap
30 Compute ASAP, ALAP of all task nodes
31 forall tasks Ti in max-heap do
32 Compute slacki using Equation 5.2

highest service-level, it is not reinserted into the heap. The slack times of remaining tasks
are recomputed and they become, slack1 = slack5 = slack6 = slack7 = 0, slack3 = 1. It
may be observed that the available slacks of none of the remaining tasks are not sufficient

102

5.3 Experimental Evaluation

T2(sl2,2) T5(sl5,1) T6(sl6,1) T7(sl7,1)P1

T1(sl1,1) T3(sl3,1) T4(sl4,2)P2
0 1 2 3 4 5 6 7 8 9 10 11 12 13

time
(ms)Total Reward: 24

Figure 5.5: The T-SAQA schedule for G as a gantt chart

(a) (b) (c)

Figure 5.6: (a) Gaussian Elimination [1], (b) Epigenomics [2] (c) Laplace [4]

for further service-level enhancements and hence, the algorithm terminates. The gantt
chart representation of the final schedule is given in Figure 5.5. The aggregated reward
returned by the T-SAQA is 24 which is greater than the reward (18) generated by
G-SAQA. �

5.3 Experimental Evaluation

The performance of the proposed strategies G-SAQA and T-SAQA, have been exper-
imentally evaluated w.r.t. to ILP-SANC using real-world benchmark PTGs as well as
randomly generated PTGs.

5.3.1 Performance evaluation using benchmark PTGs

Experimental Setup: Three benchmark PTGs namely, Gaussian Elimination [60],
Epigenomics [2], Laplace [4] have been employed to experimentally test and compare the
algorithms. Figures 5.6a, 5.6b and 5.6c, respectively show the structural representations
of Gaussian Elimination, Epigenomics and Laplace.

103

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

• The task graph representation of a Gaussian Elimination equation solver is de-
termined by the number (χ) of linear equations (also called matrix sizes) which
the algorithm attempts to solve. A Gaussian Elimination task graph contains
((χ2 + χ − 2)/2) nodes when the number of equations to be solved is χ. As ex-
ample, Figure 5.6a shows a Gaussian Elimination task graph containing 14 (=
(52 + 5− 2)/2; χ = 5) nodes.

• Epigenomics represents a procedure for genome sequencing operations in a parallel
pipelined manner. The number of nodes in an Epigenomics PTG is given by
(4γ + 4), where γ denotes the number of parallel branches. As example, for the
Epigenomics PTG shown in Figure 5.6b, the number of parallel branches, γ = 3
and therefore, the graph has 16 task nodes.

• The Laplace PTG corresponds to the Laplace algorithm for equation solving with
the number of nodes in a PTG being represented by ϕ2, where ϕ is the size of
matrix given as an input to the algorithm. As example, for the Laplace PTG
shown in Figure 5.6c, the number of parallel branches ϕ = 4 and so, the graph has
16 task nodes.

The data associated with the PTGs and also the computing platform, have been
varied over carefully chosen ranges of values to evaluate and exhibit the efficacy of the
proposed algorithms on various possible scenarios that they may encounter in prac-
tice: (1) Matrix Sizes: χ = {5, 7, 10, 14} (Gaussian Elimination); Parallel Branches:
γ = {3, 5, 12, 24} (Epigenomics); Matrix Sizes: ϕ = {4, 5, 7, 10} (Laplace). (2) Number
of processors: Platforms consisting of 2, 4, and 8 processors have been considered. (3)
Communication to Computation Ratio CCR = {0.5, 1, 2} (CCR is the ratio of the av-
erage communication to computation cost; i.e., CCR = 1

|E|Σmij

/
(1
n×p [Σn

i=1Σp
r=1ei1r])).

(4) Number of service-levels of each task Ti is taken as, |SLi| = {3, 5}. (5) Execution
time ei1r for any task Ti at the base service-level (sli1) on processor Pr, is chosen ran-
domly from a uniform distribution [10ms, 50ms]. The execution time (eilr) for other
service-levels (from sli2) of Ti are allocated values lying between 110% and 150% of Ti’s

104

5.3 Experimental Evaluation

execution times at the immediately lower service-level (ei(l−1)r). (6) The QoS values
(QoSil) of Ti are chosen from the range [1, 200] are allocated values such that they are
monotonically increasing with its service-levels. (7) Communication times mij between
the PTG nodes are also chosen from a uniform random distribution [10ms, 50ms]. In
order to maintain the required CCR, the obtained mij values are appropriately scaled.
(8) The PTG is associated with the single end-to-end deadline which is derived from the
schedule length obtained by applying the PEFT list scheduling heuristic scheme [1]. In
particular, we compute two schedule length values DL and DH by assigning the PTG
task nodes at sli1 and sli|SLi|, respectively. The actual deadline D is obtained using a
parameter called Deadline extension Rate (DR): D = DL + ((DH −DL)×DR), where
DR ∈ {0, 0.25, 0.5, 0.75, 1}. For example, the different deadlines values corresponding
to various DRs for a PTG with DL = 20 and DH = 40 are 20, 25, 30, 35, 40. System
configuration used for experimentation: (i) software tool: CPLEX optimizer [10] ver-
sion 12.6.2.0, (ii) operating system: Linux Kernel 3.10.0-693.21.1.el7.x8, and (iii) CPU:
Intel(R) Xeon(R).

Performance Metrics: (1) Normalized Reward: NR (in %) = RACT

RMAX
× 100, where,

RACT denote the QoS obtained and RMAX represents the maximum QoS, for the PTG.
(2) Running time: Total time taken to compute the solution for a given PTG. Each
data point in the plots for scheduler run-times is obtained as the average over 100 runs
of the scheduler, on different PTG instances produced by carefully varying a chosen set
of parameters.

Experiment-1: Comparing Running Time: The first part of this experiment
compares the running times of ILP-SANC, G-SAQA, and T-SAQA. The number of
processors p is fixed at 8, CCR at 1, number of service-levels |SLi| at 3, χ at 5 (Gaussian
Elimination), γ at 3 (Epigenomics) and ϕ at 4 (Laplace). Table 5.3 shows the results.
It can be seen that both the heuristic schemes (G-SAQA and T-SAQA) are about ∼106

times faster on an average than the optimal strategy ILP-SANC. The second part of
this experiment compares the running times of G-SAQA and T-SAQA by varying the
number of task nodes in the PTG, while fixing p at 4, CCR at 1, |SLi| at 5. The

105

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

experimental results are depicted in Figure 5.7. The results show that the running-time
of T-SAQA is always greater than G-SAQA. This is because ASAP and ALAP times
need to be recomputed for all tasks in the PTG after each service-level upgradation in
T-SAQA (refer time-complexity analysis of T-SAQA). As example, in the Epigenomics
PTG with DR = 0.25 (refer Figure 5.7b), the running time for n = 100, using G-SAQA
and T-SAQA are ∼1.2 ms and ∼3.2 ms, respectively.

PTG Strategy
Deadline Extension Rate

0 0.25 0.5 0.75 1

Gaussian
Elimination

ILP-SANC 477.288s 216.231s 60.2835s 16.9734s 3.7769s
G-SAQA 95.78µs 98.53µs 100.79µs 109.45µs 113.15µs
T-SAQA 117.87µs 130.67µs 138.49µs 145.92µs 154.8µs

Epigenomics
ILP-SANC 3213.06s 1509.76s 206.503s 33.414s 4.1416s
G-SAQA 95µs 102.23µs 102.15µs 110.31µs 117.56µs
T-SAQA 118.55µs 135.08µs 143.15µs 156.6µs 159.18µs

Laplace
ILP-SANC 11510.4s 1931.33s 233.483s 32.2053s 9.8382s
G-SAQA 112.74µs 122.17µs 121.25µs 130.6µs 139.51µs
T-SAQA 139.27µs 157.6µs 168.76µs 182.08µs 189.86µs

Table 5.3: Comparing run-times of ILP-SANC, G-SAQA and T-SAQA

Experiment-2: Variation on the number of processors: This experiment
compares ILP-SANC, G-SAQA, and T-SAQA, as the number of processors p is increased
from 2 to 8, while fixing CCR to 1, number of service-levels |SLi| to 3 for all tasks.
Figure 5.8 shows the results. It can be observed that the normalized rewardNR improves
with increase in the number of processors, for any given deadline extension rate value.
This may be attributed to the fact that as number of processors become higher, residual
capacity increases. This residual capacity has been used by the system to enhance the
tasks’ service-levels which in turn result in higher NR. Additionally, it may be noted
that ILP-SANC being optimal, always outperforms its heuristic counter-parts G-SAQA
and T-SAQA. Among the heuristic algorithms, T-SAQA which better harnesses the
slack available in the base PEFT schedule, it seems to always deliver better performance

106

5.3 Experimental Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.25 0.5 0.75 1

R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Deadline Extention Rate

G-SAQA: n = 27
T-SAQA: n = 27
G-SAQA: n = 54
T-SAQA: n = 54

G-SAQA: n = 104
T-SAQA: n = 104

(a) Gaussian Elimination

 0

 1

 2

 3

 4

 5

 6

 0 0.25 0.5 0.75 1

R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Deadline Extention Rate

G-SAQA: n = 24
T-SAQA: n = 24
G-SAQA: n = 52
T-SAQA: n = 52

G-SAQA: n = 100
T-SAQA: n = 100

(b) Epigenomics

 0

 1

 2

 3

 4

 5

 6

 0 0.25 0.5 0.75 1

R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Deadline Extention Rate

G-SAQA: n = 25
T-SAQA: n = 25
G-SAQA: n = 49
T-SAQA: n = 49

G-SAQA: n = 100
T-SAQA: n = 100

(c) Laplace

Figure 5.7: Running time comparison of G-SAQA and T-SAQA

than G-SAQA. For example, let us consider the Epigenomics PTG with DR = 0.25
(Figure 5.8b). NR values obtained using ILP-SANC for p = 2 and p = 8 are ∼87% and
∼100%, respectively. Also, for a fixed number of processors (say, p = 2), ILP-SANC
is seen to deliver ∼29% and ∼17% better results compared to G-SAQA and T-SAQA,
respectively.

The relative degradation of the proposed schemes have been measured by using a pa-
rameter called Relative QoS (R), which is defined as R(%) = Roptimal−Rheuristic

Roptimal
. Table 5.4

depicts the distribution of relative QoS corresponding to the two proposed heuristic
schemes using three different benchmark PTGs on systems consisting of 2, 4, and 8

107

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

ILP-SANC: p = 2
G-SAQA: p = 2
T-SAQA: p = 2

ILP-SANC: p = 4
G-SAQA: p = 4
T-SAQA: p = 4

ILP-SANC: p = 8
G-SAQA: p = 8
T-SAQA: p = 8

(a) Gaussian Elimination

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

ILP-SANC: p = 2
G-SAQA: p = 2
T-SAQA: p = 2

ILP-SANC: p = 4
G-SAQA: p = 4
T-SAQA: p = 4

ILP-SANC: p = 8
G-SAQA: p = 8
T-SAQA: p = 8

(b) Epigenomics

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

ILP-SANC: p = 2
G-SAQA: p = 2
T-SAQA: p = 2

ILP-SANC: p = 4
G-SAQA: p = 4
T-SAQA: p = 4

ILP-SANC: p = 8
G-SAQA: p = 8
T-SAQA: p = 8

(c) Laplace

Figure 5.8: Effect of varying processors

processors. For any fixed combination of these parameters, 100 test cases have been ex-
ecuted. For a specific benchmark and a particular number of processors, we have shown
the number of test cases for which deviation R in performance of the heuristic algorithm
is within 10%, between 10% and 20%, and above 20%, respectively. For example, when
the selected PTG is Gaussian Elimination and p = 2, the deviation in performance is
within 10% for 42 test cases, between 10% and 20% for 42 test cases, above 20% for 16
test cases, within the total 100 test cases considered. Further, we found that T-SAQA
is able to produce same results as the optimal strategy ILP-SANC, in many cases. For
example, T-SAQA is able to produce the same reward as the ILP-SANC in 36 test cases

108

5.3 Experimental Evaluation

out of the total of 100 test cases considered for Gaussian Elimination with DR = 0.5,
CCR = 1 and p = 4.

PTG Strategy

#Processors (with DR fixed at 0.5)
p = 2 p = 4 p = 8

R ≤
10

10 <
R ≤
20

R >
20

R ≤
10

10 <
R ≤
20

R >
20

R ≤
10

10 <
R ≤
20

R >
20

Gaussian
Elimination

G-SAQA 0 22 78 28 52 20 76 18 6
T-SAQA 42 42 16 96 4 0 100 0 0

Epigenomics
G-SAQA 0 18 82 32 56 12 90 10 0
T-SAQA 30 56 14 96 4 0 100 0 0

Laplace
G-SAQA 0 10 90 28 32 40 76 22 2
T-SAQA 40 38 22 82 18 0 100 0 0

Table 5.4: Distribution for deviation in performance (w.r.t. ILP-SANC) G-SAQA and
T-SAQA

Experiment-3: Varying CCR: We vary CCR from 0.5 to 2, while fixing p to
2 and number of service-levels |SLi| to 3 for all tasks. Figure 5.9 depicts the results
for this experiment. For fixed values of p, n and D, higher values of CCR imply lower
computation demands of tasks on processors at any given service-level. Such lower
computation demand naturally enhances the possibility of task service-level upgradation.
Consequently, this leads to an increase in the obtained QoS (NR). Additionally, higher
values of CCR imply higher communication demands imparted by message nodes. The
removal of such heavy message nodes (when both the predecessor and successor task
nodes of the message node are assigned onto the same processor) in turn results in higher
time savings which can also be used to enhance the service-levels of tasks to produce
higher QoS (NR). For example, in the Epigenomics PTG with DR = 0.25 (Figure 5.9b),
the normalized reward NR obtained using ILP-SANC for CCR = 0.5 and CCR = 2 are
∼86% and ∼ 92%, respectively. Further, for the same set of system parameters, it can
be seen that ILP-SANC delivers ∼27% and ∼15% better results compared to G-SAQA
and T-SAQA, respectively. Among the heuristic schemes, T-SAQA performs better than

109

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

G-SAQA in all cases, as expected.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

ILP-SANC: CCR = 0.5
G-SAQA: CCR = 0.5
T-SAQA: CCR = 0.5
ILP-SANC: CCR = 1

G-SAQA: CCR = 1
T-SAQA: CCR = 1

ILP-SANC: CCR = 2
G-SAQA: CCR = 2
T-SAQA: CCR = 2

(a) Gaussian Elimination

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1
N

o
rm

a
liz

e
d

 R
e

w
a

rd
 (

in
 %

)

Deadline Extention Rate

ILP-SANC: CCR = 0.5
G-SAQA: CCR = 0.5
T-SAQA: CCR = 0.5
ILP-SANC: CCR = 1

G-SAQA: CCR = 1
T-SAQA: CCR = 1

ILP-SANC: CCR = 2
G-SAQA: CCR = 2
T-SAQA: CCR = 2

(b) Epigenomics

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

ILP-SANC: CCR = 0.5
G-SAQA: CCR = 0.5
T-SAQA: CCR = 0.5
ILP-SANC: CCR = 1

G-SAQA: CCR = 1
T-SAQA: CCR = 1

ILP-SANC: CCR = 2
G-SAQA: CCR = 2
T-SAQA: CCR = 2

(c) Laplace

Figure 5.9: Effect of varying CCR

Experiment-4: Varying the number of tasks: In this experiment, we compare
the performance of G-SAQA and T-SAQA by varying the number of task nodes in
the PTGs as follows: Gaussian Elimination: {27, 54, 104}; Epigenomics: {24, 52, 100};
Laplace: {25, 49, 100}. Also, we set p to 4, CCR to 1, number of service-levels |SLi| to 5.
Figure 5.10 depicts the results for this experiment. It can be seen from the figures that
the NR values decrease with increase in the number of tasks. As the number of tasks
increase with the deadline remaining fixed, the total available slack decreases, which in
turn leads to lower rewards. For example, in the Epigenomics PTG with DR = 0.5

110

5.3 Experimental Evaluation

(Figure 5.10b), the normalized reward obtained using G-SAQA for n = 24 and n =
100 are ∼54% and ∼49%, respectively. It can also be seen from the figures that in
all cases, T-SAQA returns higher NR values than G-SAQA due to its ability to better
utilize the total slack available in the system. For example, in the Epigenomics PTG
with DR = 0.25 (Figure 5.10b), the normalized reward obtained for n = 24 and n =
100 using G-SAQA are ∼43% and ∼40%, respectively, and for T-SAQA are ∼66% and
∼61%, respectively.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

G-SAQA: n = 27
T-SAQA: n = 27
G-SAQA: n = 54
T-SAQA: n = 54

G-SAQA: n = 104
T-SAQA: n = 104

(a) Gaussian Elimination

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

G-SAQA: n = 24
T-SAQA: n = 24
G-SAQA: n = 52
T-SAQA: n = 52

G-SAQA: n = 100
T-SAQA: n = 100

(b) Epigenomics

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Deadline Extention Rate

G-SAQA: n = 25
T-SAQA: n = 25
G-SAQA: n = 49
T-SAQA: n = 49

G-SAQA: n = 100
T-SAQA: n = 100

(c) Laplace

Figure 5.10: Effect of varying number of tasks

Experiment-5: Comparison with the state-of-the-art: This experiment com-
pares ILP-SANC, G-SAQA and T-SAQA against the list based heuristic scheduling algo-

111

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

rithm PEFT [1]. The essential objective of PEFT is to minimize makespan corresponding
to a task graph in which all tasks have only a single service-level. Therefore, as PEFT is
task service-level oblivious, in order to apply PEFT within our framework, service-levels
of all tasks must be fixed before its application. After assigning selected service-levels
to task nodes, PEFT is run on the PTG and the resulting normalized reward NR and
makespan values are noted. ILP-SANC, G-SAQA and T-SAQA are then executed on
the same PTG with the makespan value delivered by PEFT, as deadline. To improve
normalized reward values for PEFT, we have selectively chosen higher service-levels for
those tasks which deliver higher reward gains with respect to additional execution time
consumed. The experimental results are depicted in Table 5.5. It may be observed that
like optimal solution approach ILP-SANC, our proposed heuristic approaches G-SAQA
and T-SAQA are also able to achieve higher normalized rewards compared to PEFT for
any given deadline bound, unless the deadline is so relaxed that PEFT is also able to
assign highest service-levels to all tasks.

PTG Strategy
Percentage of Tasks Upgraded
0 0.25 0.5 0.75 1

Gaussian
Elimination

ILP-SANC 75.11 77.11 91.12 99.13 100
G-SAQA 35.68 54.09 78.69 88.79 100
T-SAQA 52.57 69.75 86.32 96.76 100

PEFT 30.08 49.39 71.37 83.84 100

Epigenomics

ILP-SANC 88.63 89.60 98.94 100 100
G-SAQA 47.89 75.31 87.58 96.23 100
T-SAQA 58.87 82.35 96.73 98.97 100

PEFT 45.95 67.36 81.18 94.91 100

Laplace

ILP-SANC 81.23 86.42 94.83 99.63 100
G-SAQA 44.65 72.29 81.74 94.73 100
T-SAQA 55.97 80.65 95.71 97.98 100

PEFT 35.45 61.47 79.13 90.17 100

Table 5.5: Comparison of ILP-SANC, G-SAQA and T-SAQA with PEFT [1]

112

5.3 Experimental Evaluation

5.3.2 Performance evaluation using randomly generated PTGs

Experimental Setup: In this section, we have considered randomly generated PTGs
in place of benchmark PTGs, to evaluate the performance of our proposed schemes. For
this purpose, we have used the following parameters: (1) the number of tasks (n) in the
PTG: varied from 25 to 100, (2) the total number of levels in the PTG (denoted by
L): generated from a normal distribution having 〈µ, σ〉 values equal to

〈√
n,
√
n ∗ 0.1

〉
,

(3) the number of nodes at any level in the PTG: generated from another normal
distribution having 〈µ, σ〉 values being

〈
n/L, (n/L) ∗ 0.1

〉
, (4) the number of processors

(p): varied from 2 to 16, (5) heterogeneity (h): varied from 10 to 40. For a given
value of h, the execution times of a task on different processors have been generated by
selecting values from a uniform distribution [(30−h/2), (30 +h/2)]. It may be observed
that heterogeneity in the execution times of a task on different processors monotonically
increase with h. All result points on any given line in the plots in Figures 5.11a and 5.11b
are generated by running a specific algorithm on the same task graph and the same value
of deadline. To compute this deadline, the PEFT algorithm is used to schedule the task
graph and obtain its makespan for the case when p = 2, h = 10, and n = 100. The
deadline is then given by the minimum number D, which is a multiple of 100 and is
greater than or equal to the obtained makespan. For example, let the average makespan
produced by PEFT after 100 iterations to be 1556. So, the deadline D for this case
becomes 1600.

Experiment-5: Varying the number of tasks and processors: In this exper-
iment, we compare the performance of G-SAQA and T-SAQA by varying the number
of task nodes in the PTG from 25 to 100 and number of processors from 2 to 16. Also,
we set CCR to 1, the number of service-levels |SLi| to 5 for all tasks. Figure 5.11a
depicts the results for this experiment. It may be observed that the obtained trends
for randomly generated PTGs are very similar to those obtained for benchmark PTGs.
Even for this case, NR improves as #processors become higher because residual capacity
increases. For example, when n = 100, the normalized reward obtained using T-SAQA
for p = 4 and p = 8 are ∼96% and ∼100%, respectively. The NR values may be seen to

113

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 8 12 16

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Number of Processors

G-SAQA: n = 25
T-SAQA: n = 25
G-SAQA: n = 50
T-SAQA: n = 50
G-SAQA: n = 75
T-SAQA: n = 75

G-SAQA: n = 100
T-SAQA: n = 100

(a) Varying n and p

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 8 12 16

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Number of Processors

G-SAQA: h = 10
T-SAQA: h = 10
G-SAQA: h = 20
T-SAQA: h = 20
G-SAQA: h = 30
T-SAQA: h = 30
G-SAQA: h = 40
T-SAQA: h = 40

(b) Varying h and p

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 8 12 16

N
o

rm
a

liz
e

d
 R

e
w

a
rd

 (
in

 %
)

Number of Processors

G-SAQA: h = 10
T-SAQA: h = 10
G-SAQA: h = 20
T-SAQA: h = 20
G-SAQA: h = 30
T-SAQA: h = 30
G-SAQA: h = 40
T-SAQA: h = 40

(c) Varying h and p keeping W same

Figure 5.11: Effect of varying #tasks, #processors and heterogeneity

decrease with the increase in the number of tasks. As the number of tasks increase with
the deadline remaining fixed, the total available slack decreases, which in turn leads to
lower rewards. For example, at p = 4 the NR value obtained using G-SAQA for n = 25
and n = 100 are ∼100% and ∼59%, respectively. Similar to the previous experiments,
T-SAQA returns higher or equal NR values than G-SAQA, for all cases.

Experiment-6: Varying heterogeneity: This experiment compares the perfor-
mance of G-SAQA and T-SAQA by varying the heterogeneity (h) among processors
from 10 to 40 and number of processors from 2 to 16. Also, we set n to 100, CCR to
1, number of service-levels |SLi| to 5. Figure 5.11b depicts the results for this exper-

114

5.3 Experimental Evaluation

iment. It can be observed that the normalized reward NR increases with increase in
the heterogeneity among processors. With the increase in heterogeneity, difference in the
execution times of a task on different processors, also increase. This shows that both
G-SAQA and T-SAQA can effectively harness task-to-processor affinities resulting from
the underlying system heterogeneity and conduct efficient resource allocation so that
the overall aggregate reward is maximized. For example, the NR values obtained using
T-SAQA for h = 10 and h = 40 are ∼80% and ∼96%, respectively, at p = 4. It can also
be seen that in all cases, T-SAQA outperforms G-SAQA.

Experiment-7: Varying the number of processors while keeping normal-
ized workload same: In this experiment, we have maintained the normalized workload
same instead of absolute workload. Here, we have defined normalized workload W of the
task nodes in a PTG as,

W =
∑n
i=1

∑|SLi|
l=1

∑p
r=1 eilr

D × p2 ×∑n
i=1 |SLi|

(5.3)

where, D is the deadline, p is the number of processors, |SLi| is the number of service-
levels of task Ti and eilr is the execution time of Ti at service-level slil on processor
Pr.

The results of the experiment are reported in Figure 5.11c. It can be seen from
the figure that the normalized rewards (NR) decrease with increase in the number of
processors. This is because in order to maintain normalized workload at a particular
value, the average execution time of each task must be increased p′′/p′ times, when
the number of processors is increased from p′ to p′′ (say). When the execution time
of a task is relatively higher, the difference in execution times of the task between
consecutive service-levels will also be higher. On the other hand, although the total
system capacity increases with the increase in the number of processors, the capacity of
individual processors remain same. The non-preemptive task nodes which are now bigger
in terms of their execution times must still be entirely executed within the capacity of a
single processor. From these observations, it may be easily inferred that increase in the
number of processors (with normalized workload remaining same) leads to the possibility
of, (i) decrease in the number of tasks which may be feasibly accommodated within a

115

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

single processor (leading to decrease in resource utilization), (ii) reduction in the degree
of service-level enhancement of tasks (leading to decrease in rewards). In addition, it
may be observed that the structure of the PTG (number of task nodes and their inter
dependencies) used as input to the experiment continues to remain same as the number
of processors is increased. With the structure remaining same, the inherent available
parallelism associated with the input PTG do not change when the available number of
processors increase. Thus, when the total number of processors is sufficiently high, the
total resource utilization will ultimately start to exhibit a decreasing trend.

5.4 Case Study: Traction Controller

To exhibit the practical applicability of the proposed strategies to real-world design, a
case study using a Traction Controller (TC) application present in automotive systems,
is discussed here. TC helps in actively stabilizing an automobile so that it can continue
in its stipulated path even when road conditions are slippery [5]. Figure 5.12a depicts
the block diagram of TC as adopted from [5]. The corresponding PTG representation
which consists of 10 task nodes {T1, T2, . . . , T10}, is shown in Figure 5.12b. For the
purpose of this case study, we assume that the PTG is to be executed on a two processor
heterogeneous distributed platform, P = {P1, P2}. Table 5.6 lists the execution times of
the task nodes on the different processors in platform P . The deadline is assumed to be
134 ms.

Left-rear
wheel speed

Left-front
wheel speed

Right-rear
wheel speed

Right-front
wheel speed

Hand-wheel
position Yaw rate Lateral

acceleration

Desired braking
force

Actuate
brakes

Actuate
throttle

D
=

13
4

(a)

T1 T2 T3 T4

T6T5 T7

T8

T9 T10

20 13 12 28

33 22 21

21 11

D
=

13
4

(b)

Figure 5.12: Traction Control application’s (a) Block Diagram [5], (b) PTG representation

116

5.4 Case Study: Traction Controller

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

sli1

P1 14 15 14 27 20 22 25 16 26 18
P2 26 17 11 29 10 17 28 24 25 14

QoSi1 41 112 97 5 137 23 48 64 13 37

sli2

P1 17 19 17 32 25 25 32 20 29 23
P2 32 21 13 35 12 19 35 30 28 18

QoSi2 53 163 104 88 143 81 64 80 95 113

sli3

P1 19 22 18 36 28 30 35 22 34 26
P2 37 24 14 40 13 22 38 34 33 21

QoSi3 143 164 190 190 171 99 149 157 135 135

Table 5.6: Computation time (in ms) of task nodes in Traction Control PTG

T1(sl1,3)T2(sl2,1) T4(sl4,2) T6(sl6,1) T8(sl8,1) T9(sl9,2)P1

T10(sl10,2)T3(sl3,3) T5(sl5,3) T7(sl7,3)P2
0 10 20 30 40 50 60 70 80 90 100 110 120 130

134

time
(ms)

Figure 5.13: The ILP-SANC schedule for G (Figure 5.12b) as a gantt chart; Reward = 1148

T1(sl1,1) T2(sl2,1) T5(sl5,1)T7(sl7,1) T8(sl8,1) T9(sl9,2)P1

T3(sl3,2) T4(sl4,1) T6(sl6,2) T10(sl10,2)P2
0 10 20 30 40 50 60 70 80 90 100 110 120 130

134

time
(ms)

Figure 5.14: The G-SAQA schedule for G (Figure 5.12b) as a gantt chart; Reward = 800

We have employed ILP-SANC, G-SAQA and T-SAQA to generate schedules for
the PTG of TC with the objective of maximizing aggregate reward. We summarize
below the important observations associated with the obtained schedules for ILP-SANC
(Figure 5.13), G-SAQA (Figure 5.14), and T-SAQA (Figure 5.15):

• Heterogeneity Modeling: Each PTG node consumes distinct execution times de-
pending on the processor allocated to it. As example, in Figure 5.13, T3 consumes

117

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

T1(sl1,1) T2(sl2,2) T5(sl5,1)T7(sl7,3) T8(sl8,1) T9(sl9,2)P1

T3(sl3,2) T4(sl4,2) T6(sl6,2) T10(sl10,2)P2
0 10 20 30 40 50 60 70 80 90 100 110 120 130

134

time
(ms)

Figure 5.15: The T-SAQA schedule for G (Figure 5.12b) as a gantt chart; Reward = 1035

14 ms as it is scheduled on P2 at service-level 3.

• Implementation of ILP-SANC using the CPLEX optimizer generates 409 con-
straints and takes ∼ 3.07 secs to produce the solution. The corresponding schedule
(in Figure 5.13) delivers a reward of 1148 (NR = 74.89). On the other hand, the
schedules computed using G-SAQA (Figure 5.14) and T-SAQA (Figure 5.15) take
223 µs and 259 µs, respectively to generate their solutions while producing rewards
of 800 (NR = 52.19) and 1035 (NR = 67.51), respectively. Similar to the results
trend obtained in the experiments section (Section 5.3), we observe that the op-
timal solution ILP-SANC delivers significantly higher rewards (348 higher w.r.t.
G-SAQA; 113 higher w.r.t. T-SAQA). However, the run-time overhead associated
with ILP-SANC is about ∼106 times higher than the heuristic algorithms. On
the other hand, the heuristic algorithms are much faster than ILP-SANC while
delivering acceptably good solutions as necessary during quick design iteration.
Finally, T-SAQA may be seen to produce better solution although at the cost of
a slightly higher run-time overhead.

5.5 Summary

This chapter considers the problem of computing heuristic schedules for PTGs with
multiple service levels, executing on fully-connected distributed systems consisting of
heterogeneous processors. In the previous chapter (Chapter 4), two distinct ILP based
optimal solution approaches ILP-SATC and ILP-SANC are proposed to solve the same
problem. Though ILP-SANC significantly improves scalability of the solution compared
to ILP-SATC, its run time is still high and sensitive to the number of tasks. Appreci-

118

5.5 Summary

ating the necessity of a fast but efficient algorithm for the problem at hand, especially
for situation when quick solutions are needed at design-time or run-time, we have pro-
posed two heuristics namely, G-SAQA and T-SAQA. Extensive experiments have been
carried-out using benchmark and randomly generated PTGs to evaluate performance
of the proposed strategies (G-SAQA, T-SAQA). The obtained results show that both
the heuristic schemes (G-SAQA and T-SAQA) are ∼106 times faster than the optimal
strategy ILP-SANC. Further, the solution qualities delivered by T-SAQA is at least as
good as G-SAQA. However, the computational overheads associated with T-SAQA is
significantly higher than G-SAQA. Finally, a case study on a Traction Controller (TC)
application has been presented. The next chapter extends the problem of scheduling
PTGs on fully-connected platforms to CPSs where the processors are connected through
a limited number of bus based shared communication channels.

119

5. HEURISTIC PTG SCHEDULING STRATEGIES ON
HETEROGENEOUS DISTRIBUTED SYSTEMS

120

Chapter 6
PTG Scheduling on Shared-Bus Based
Heterogeneous Platforms

The PTG scheduling techniques considered in the previous chapters (Chapter 4 and
Chapter 5) assumed a fully connected heterogeneous platform. Assumption of a fully
connected platform helps to avoid the problem of communication resource contention,
as is the case when the system is assumed to have shared data transmission channels.
It may be appreciated that shared bus networks form a very commonly used commu-
nication architecture in CPSs [41, 42]. Therefore, this chapter proposes the design of
ILP based optimal scheduling strategies as well as low-overhead heuristic schemes for
the co-scheduling of real-time PTGs executing on a distributed platform consisting of a
set of heterogeneous processing elements interconnected by heterogeneous shared buses.
Although, both the approaches produce optimal solutions, ILP-NC suffers significantly
lower computational overheads compared to ILP-ETR. In addition to the optimal so-
lution approaches, we propose a fast but effective heuristic strategy called CC-TMS
which consumes much lower time and space complexities while producing satisfactorily
good solutions. The proposed schemes have been evaluated through an extensive set of
experiments and a case study with a Traction Controller (TC) application is presented.

6.1 System Model

The system model associated with this work is presented by describing the platform,
computation model and assumptions.

121

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

Platform: Figure 6.1 shows the pictorial representation of the heterogeneous multi-
processor platform ρ as considered here. The platform is composed of a resource set
{R1, R2, . . . , Rp+b} among which, {R1, R2, . . . , Rp} denote a set P = {P1, P2, . . . , Pp} of
p heterogeneous processors; whereas, resources {Rp+1, Rp+2, . . . , Rp+b} represent a set
B = {B1, B2, . . . , Bb} of b heterogeneous shared buses. Each bus Br ∈ B is connected
to all processors in P .

R1 = Processing
Element P1

R2 = Processing
Element P2 · · · Rp = Processing

Element Pp

Rp+1 = Bus B1

Rp+2 = Bus B2

Rp+b = Bus Bb

· · · · · · · · ·

··
·

Figure 6.1: Platform Model ρ

Computation Model: A Cyber-Physical System (CPS) application as considered in
this work is represented by a PTG G = (V,E, ET, CT) where,

• V = {V1,V2, . . . ,Vn+m} represents the node. Among them, {V1,V2, . . . ,Vn} rep-
resent a set T = {T1, T2, . . . , Tn} of n tasks. Similarly, {Vn+1,Vn+2, . . . ,Vn+m}
denotes a set M = {M1,M2, . . . ,Mm} of m messages which specify communica-
tion demand between task pairs.

• E ⊆ V × V denotes the edge set describing dependency-constraints between pairs
of nodes in V.

• ET is an execution-time matrix of size n× p. Each element eir ∈ ET captures the
execution demand of task Ti (vertex Vi) on processor Pr (resource Rr).

• CT is a communication-time matrix of size m×b. Each element ckr ∈ CT captures
the communication time associated with message Mk (vertex Vn+k) on bus Br

(resource Rp+r).

122

6.1 System Model

The Assumptions:

1. PTG G has a single entry (source) node T1 (having in-degree 0) and a single
exit (sink) node Tn (having out-degree 0). If the input PTG contains multiple
source/sink nodes, we add a single dummy source/sink task node (having execution
time 0 on all processors) which connect to all original source/sink task nodes via
dummy edges. Dummy message nodes (having transmission time 0 for all buses)
are added to each of these new edges.

2. The entry (T1) and exit (Tn) nodes are both tasks.

3. Any task Ti is preceded (except T1)/succeeded (except Tn) by message node(s).

4. Any message Mk is preceded/succeeded by one task node only.

5. The communication overhead associated with a message node Mk is assumed to
be negligible (∀Br ∈ B, ckr = 0) when its preceding as well as succeeding task
nodes are assigned to the same processor.

Example: Figure 6.2a shows an example of a PTG G which consists of 13 nodes
{V1,V2, . . . ,V13}. Among them, {V1, . . . ,V6} are tasks and {V7, . . . ,V13} are messages.
Hence, n = 6 and m = 7. Figure 6.2b shows a sample platform model ρ consisting of
four resources R = {R1, R2, R3, R4}. Among them R1, R2 denote two processors P1, P2

and R3, R4 denote two buses B1, B2. Thus, p = 2, b = 2. In Table 6.1, we show the
execution time matrix ET . An element say e1,1 = 4 in this matrix specifies that task
T1 (corresponding to vertex V1) takes 4 units of time to finish execution on processor
P1. In the same way, Table 6.2 shows matrix CT , depicting communication time. An
element say c1,1 = 2 in this matrix specifies that message M1 (corresponding to vertex
V7) takes 2 units of time for transmission over bus B1 (assigned on resource R3).

Problem Definition: Given a real-time PTG G = (V,E, ET, CT) with end-to-end
deadline D to be executed on a heterogeneous platform consisting of p processors and b
buses, determine the start times for all task and message nodes, task-to-processor and

123

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

V1
(T1)

V8
(M2)

V7
(M1)

V9
(M3)

V3
(T3)

V2
(T2)

V4
(T4)

V10
(M4)

V11
(M5)

V12
(M6)

V5
(T5)

V13
(M7)

V6
(T6)

D
=

20

(a)

R1 = Processing
Element P1

R2 = Processing
Element P2

R3 = Bus B1

R4 = Bus B2

(b)

Figure 6.2: (a) Example of a PTG G and (b) Model of Platform ρ

T1 T2 T3 T4 T5 T6

P1 4 8 3 2 4 2
P2 3 5 4 3 2 3

Table 6.1: Execution time Matrix ET of task nodes

M1 M2 M3 M4 M5 M6 M7

B1 2 4 5 3 3 1 3
B2 3 3 3 4 2 3 2

Table 6.2: Communication time Matrix CT of message nodes

message-to-bus assignments, with the objective of minimizing the overall makespan (i.e.,
schedule length) and meets the deadline D.

6.2 Earliest/Latest Start Times for PTG Nodes

Unlike the discussions on the tasks’ Earliest/Latest start times in Section 4.2 and Sub-
section 5.2.1 in Chapters 4 and 5, we present here the Earliest and Latest computation

124

6.2 Earliest/Latest Start Times for PTG Nodes

times for messages in addition to tasks.
Let, tsi and tli be the earliest and latest time steps at which node Vi may start its

execution. These upper and lower bounds on start times are determined separately for
the task and message nodes in the given PTG. The tsi (ASAP time) and tli (ALAP time)
values for task nodes are computed as follows.

ASAP/ALAP computation procedure for task nodes:

1. We ignore message nodes in the PTG and assume directed edges between the
predecessor and successor task nodes of each message node.

2. Set ASAP time of the source task node as: ts1 = 1.

3. Set ALAP time for the sink task node as,

tln = D − min
r∈[1,p]

enr + 1

4. ASAP times for the remaining task nodes (except T1) are recursively determined
(downward) as follows:

tsi = max
Tj∈pred(Ti)

(tsj + min
r∈[1,p]

ejr)

where, pred(Ti) is the set of predecessors of task node Ti.

5. ALAP times for the remaining task nodes (except Tn) are recursively defined (up-
ward) as follows:

tli = min
Tj∈succ(Ti)

(tlj − min
r∈[1,p]

eir)

where, succ(Ti) is the set of successors of task node Ti.

Given the ASAP/ALAP times for task nodes in the PTG, we now compute these values
for message nodes.

ASAP/ALAP computation procedure for message nodes:

125

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

1. The ASAP time of a message node Mk is defined as:

tsn+k = tsi + min
r∈[1,p]

eir

where, Ti (i.e., vertex Vi) is the predecessor task node of Mk (i.e., vertex Vn+k).

2. Similarly, ALAP time of a node Mk is defined as follows:

tln+k = tlj − min
r∈[1,b]

ckr

where, Tj is the successor task node of Mk.

Example (contd.): Let us assume the deadline D of PTG G (in Figure 6.2a) to be 20
time units. Table 6.3 shows the ASAP and ALAP times corresponding to each task
and message node in G, obtained through the above discussed procedure. For example,
ASAP and ALAP times of task node T1 are 1 and 9, respectively.

T1 T2 T3 T4 T5 T6 M1 M2 M3 M4 M5 M6 M7

ASAP 1 4 4 4 7 9 4 4 4 9 7 6 9
ALAP 9 12 14 17 17 19 10 11 14 14 15 18 17

Table 6.3: ASAP & ALAP times of nodes in G (Figure 6.2a)

Next, we present two ILP based strategies namely, ILP-ETR and ILP-NC. The de-
sign philosophies of ILP-ETR and ILP-NC are similar to the formulations ILP-SATC
(Chapter 4, Section 4.3) and ILP-SANC (Chapter 4, Section 4.4) respectively, proposed
in Chapter 4 for PTG scheduling on fully connected heterogeneous platform. However,
the objective functions and many of the constraints in the ILPs presented in this chapter
require certain modifications with respect to those in Chapter 4, as the current work
assumes a distributed platform connected via shared buses. In order to improve conti-
nuity of discussion, completeness and better readability, we have discussed in details all
the constraints and objective functions involved in ILP-ETR and ILP-NC.

126

6.3 ILP Formulation: ILP-ETR

6.3 ILP Formulation: ILP-ETR

In this section, we present an ILP based solution to the PTG scheduling problem. First,
let us consider a set of binary decision variables: X = {Xirt : i = 1, 2, . . . , n + m; r =
1, 2, . . . , p+ b; t = 1, 2, . . . , D}. The variable Xirt = 1, when the PTG node Vi (i.e., task
node Ti/message node Mi−n) starts on the resource Rr (i.e., processing element Pr/bus
Br−p) at the tth time step; Xirt = 0, otherwise. We now present the required constraints
on the binary variables X to model the scheduling problem.

6.3.1 Unique Start Time Constraints

The start time of each task node should be unique. That is, each task node Ti must
start its execution at a unique time step t on a distinct processing element Pr.

∀i ∈ [1, n]
p∑
r=1

tli∑
t=tsi

Xirt = 1 (6.1)

Similarly, each message node Mk must have a unique start time if Mk is actually
transmitted over a bus (refer Assumption 5). So, the following constraint must hold:
∀Mk| Ti = pred(Mk) and Tj = succ(Mk),

p+b∑
r=p+1

tl
k′∑

t=ts
k′

Xk′rt = 1− Yk (6.2)

where,

k′ = n+ k and Yk =
p∑
r=1

tli∑
t1=tsi

tlj∑
t2=tsj

Xirt1 ∗Xjrt2

It may noted that in the above equation, Yk = 1 when both the predecessor (Ti) and
successor (Tj) task nodes of message node Mk are assigned to the same processing
element Pr, forcing the LHS of Equation 6.2 to become 0. Otherwise, Yk = 0. As Xirt1

and Xjrt2 are binary decision variables, we linearize their multiplication by introducing
another binary decision variable Ukrt1t2 (= Xirt1 ∗Xjrt2) as shown below:

Yk =
p∑
r=1

tli∑
t1=tsi

tlj∑
t2=tsj

Ukrt1t2 (6.3)

127

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

6.3.2 Linearization of Non-linear Term

Now, the non-linear variables Ukrt1t2 can be linearized using the following four inequali-
ties.

Xirt1 > Ukrt1t2 (6.4)

Xjrt2 > Ukrt1t2 (6.5)

Ukrt1t2 > Xirt1 +Xjrt2 − 1 (6.6)

Ukrt1t2 ∈ {0, 1} (6.7)

6.3.3 Resource Constraints

Resource bounds must be satisfied at each time step for both processing elements and
buses. Any resource Rr can execute/transmit at most one task/message node at a given
time. In this regard, it may be noted that a task node Ti can only be executing on
processing element Pr at time t, if it has started at most t− eir + 1 time steps earlier.

∀t ∈ [1, D] and ∀r ∈ [1, p]
n∑
i=1

t∑
t′=ψ

Xirt′ 6 1 (6.8)

where, ψ = t− eir + 1.
Similarly, a message node Mk can only be transmitting through the bus Br at time

t, if it has started at most t− ckr + 1 time steps earlier. The range of t is

∀t ∈ [1, D] and ∀r ∈ [1, b]
m∑
k=1

t∑
t′=ψ

Xk′r′t′ 6 1 (6.9)

where, k′ = k + n, r′ = r + p and ψ = t− ckr + 1.

6.3.4 Dependency Constraints

The dependencies between nodes must be satisfied. The following three constraints
enforce satisfaction of the precedence relationships among task and message nodes of a

128

6.3 ILP Formulation: ILP-ETR

PTG. Constraints 6.10 and 6.11 assert that the preceding task node (say, Ti) of any
message node (say, Mk) completes its execution (i) before the start of the succeeding
task node (say, Tj) of Mk (in case, both Ti and Tj are assigned to the same processing
element) and, (ii) before the start of Mk (in case, both Ti and Tj are assigned to different
processing elements).
∀Mk| Ti = pred(Mk) and Tj = succ(Mk),

p∑
r=1

tli∑
t=tsi

(t+ eir) ∗Xirt 6
p∑
r=1

tlj∑
t=tsj

t ∗Xjrt (6.10)

p∑
r=1

tli∑
t=tsi

(t+ eir) ∗Xirt 6
p+b∑

r=p+1

tl
k′∑

t=ts
k′

t ∗Xk′rt + C ∗ Yk (6.11)

where, k′ = n + k and C is a constant. It may be observed that by setting C to a
sufficiently large value, the constraint in Equation 6.11 is trivially satisfied when both Ti
and Tj are assigned to the same processing element (Yk = 1). Suppose, the M th

k message
node is scheduled on a bus (i.e., Yk = 0). Then, task node Tj (= succ(Mk)) should
commence its execution only after the completion of Mk. This constraint is represented
as follows:
∀Mk| Tj = succ(Mk),

p+b∑
r=p+1

tl
k′∑

t=ts
k′

(t+ ckr) ∗Xk′rt 6
p∑
r=1

tlj∑
t=tsj

t ∗Xjrt (6.12)

where, k′ = n + k. It is noteworthy that when Yk = 1, the constraint imposed by
Equation 6.2 enforces ∑p+b

r=p+1
∑tl

k′
t=ts

k′
Xk′rt to be 0. Hence, ∑p+b

r=p+1
∑tl

k′
t=ts

k′
(t+ ckr) ∗Xk′rt

in the LHS of Equation 6.12 also reduces to 0. So, Constraint 6.12 is implicitly satisfied,
when Yk is 1.

6.3.5 Deadline Constraint:

All tasks in the PTG have to complete their execution within the deadline D. This can
be satisfied by restricting the finish time of the sink node to be at most the deadline D.

129

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

This constraint can be written as,

p∑
r=1

tln∑
t=tsn

Xnrt ∗ (t+ enr)− 1 ≤ D (6.13)

6.3.6 Objective Function

Our objective is to minimize the schedule length of PTG G. It can be achieved by
minimizing the finish time of the sink node Tn. Hence, the objective function can be
written as:

Minimize
p∑
r=1

tln∑
t=tsn

Xnrt ∗ (t+ enr) (6.14)

subject to constraints presented in Equations 6.1 - 6.13.

6.3.7 Complexity Analysis

The complexity of the proposed formulation ILP-ETR can be analyzed in terms of the
total number of constraints and the total number of variables per constraint. Such an
analysis for ILP-ETR is presented in Table 6.4. The total complexity of ILP-ETR (in
terms of number of constraints) can be obtained as O(n + m × D ×max{p, b}). Con-
sidering m >> n and p >> b, the total complexity becomes O(m× p×D).

Example (contd.): Applying the ILP-ETR procedure discussed above on our exam-
ple PTG G (Figure 6.2a), we obtain the schedule represented through the gantt chart
depicted in Figure 6.3. This problem generates 4927 constraints and takes 0.8 seconds
when solved using the CPLEX optimizer [10]. It may be noted that the schedule as-
signs unique start times to all tasks/messages and satisfies resource bounds, dependency
constraints and deadline. A further observation is that, the message nodes M1,M4 and
M7 have not been actually scheduled. This is because, all the predecessor and successor
task nodes of M1, M4 and M7 (i.e., T1, T2, T5 and T6) are scheduled by the ILP-ETR
on the same processing element P2. The optimal schedule length of G is obtained as 16
time units.

130

6.4 ILP Formulation: ILP-NC

Constraint
Type

Equation
No. #Constraints

#Variables
Per

Constraint
Unique Start
Time

6.1 O(n) O(p×D)
6.2 O(m) O(max{(b×D), (p×D2)})

Resource
6.8 O(p×D) O(n×D)
6.9 O(b×D) O(m×D)

Dependency
6.10 O(m) O(p×D)
6.11 O(m) O(max{p, b} ×D)
6.12 O(m) O(max{p, b} ×D)

Deadline 6.13 O(1) O(p×D)

Linearization
6.4 O(m×D ×max{p, b}) O(1)
6.5 O(m×D ×max{p, b}) O(1)
6.6 O(m×D ×max{p, b}) O(1)

Table 6.4: Complexity of ILP-ETR

T3 T4P1

T1 T2 T5 T6P2

M6M3B1

M5M2B2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

time
(ms)

Figure 6.3: The schedule for the PTG (Figure 6.2a) using ILP-ETR

6.4 ILP Formulation: ILP-NC

It may be observed that the complexity of ILP-ETR presented in the earlier section
depends on the number of processors, the deadline and the number of edges associated
with a given PTG. In order to improve its scalability, we propose an improved ILP for-
mulation based on the non-overlapping approach [9] which sets constraints and variables

131

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

in such a way that no two tasks executing on the same processor overlap in time. Fur-
ther, the total number of constraints required to compute a schedule for a PTG becomes
independent of the deadline of a PTG.

Before presenting ILP-NC, we first introduce the set of decision variables. Start time
of each node is captured by an integer decision variable Si ∈ Z+, where Z+ denotes the
set of positive integers. The formulation also uses three sets of binary decision variables
namely, Xir, αij, and βij. Here, variables Xir are used to capture task-to-processor and
message-to-bus mappings for the task and message nodes, respectively. Variables αij
are used to determine the precedence order of execution between mutually independent
task pairs. Variables βij are used to determine message transmission precedence orders
among mutually independent message-pairs. Variable Xir = 1, if the PTG node Vi (i.e.,
task node Ti/message node Mi−n) is assigned to the resource Rr (i.e., processing element
Pr/bus Br−p); Xirt = 0, otherwise. Variable αij = 1, if task Ti starts before task Tj;
αij = 0, otherwise. Finally, variable βij = 1, if message Mi starts before message Mj;
βij = 0, otherwise. Now, we present the required set of constraints on decision variables
to schedule a PTG on a given heterogeneous distributed platform.

6.4.1 Unique Resource Assignment:

Each task node Ti can execute only on one processing element Pr (resource Rr).

∀i ∈ [1, n]
p∑
r=1

Xir = 1 (6.15)

Similarly, each message node Mk should be transmitted uniquely through one bus
Br (resource Rp+r).
∀Mk|Ti = pred(Mk) and Tj = succ(Mk),

p+b∑
r=p+1

Xk′r = 1−
p∑
r=1

Zijr (6.16)

where, k′ = n+ k and Zijr = Xir ∗Xjr. It may be noted that, ∑p
r=1 Zijr = 1, when both

the predecessor (Ti) and successor (Tj) task nodes of message node Mk are assigned onto
the same processing element Pr, forcing the LHS of Equation 6.16 to become 0.

132

6.4 ILP Formulation: ILP-NC

6.4.2 Dependency Constraints:

The dependencies between nodes must be satisfied. For the dependency relation Ti →
Mk → Tj, Ti must finish its execution before message node Mk starts its transmission.
However, Mk vanishes when both Ti and Tj are executed on the same processing element.
Thus, the message transmission time corresponding to Mk must be neglected in this case.
∀Mk| Ti = pred(Mk) and Tj = succ(Mk),

Si +
p∑
r=1

eir ∗Xir ≤ Sk + C ∗
p∑
r=1

Zijr (6.17)

where, Zijr = Xir ∗Xjr and C is a sufficiently large constant. It can be seen that when
both tasks Ti and Tj execute on the same processor Pr, Zijr becomes 1, causing the
Equation 6.17 to be trivially true (as Sk << C). The term, Si +

∑p
r=1 eir ∗Xir, captures

the absolute finish time of Ti when assigned on processor Pr.
Similarly, for the dependency relation Ti →Mk → Tj, Mk must finish its transmission

before task node Tj starts execution.
∀Mk| Ti = pred(Mk) and Tj = succ(Mk),

Sk +
p+b∑

r=p+1
ckr ∗Xk′r ≤ Sj + C ∗

p∑
r=1

Zijr (6.18)

where, k′ = n+ k, Zijr = Xir ∗Xjr and C is a sufficiently large constant. Equation 6.18,
produces m constraints and the number of variables per constraint is O(max{p, b}).
Finally, for the dependency relation Ti → Mk → Tj, Ti must be enforced to complete
before Tj. This constraint becomes important when Ti and Tj are executed on the same
processing element, causing message node Mk to vanish.
∀Mk| Ti = pred(Mk) and Tj = succ(Mk),

Si +
p∑
r=1

eir ∗Xir ≤ Sj (6.19)

6.4.3 Non-overlapping Constraints:

The execution of any two tasks Ti and Tj assigned to the same processor cannot be over-
lapped in time. The dependency constraints discussed above automatically enforce the

133

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

non-overlapping property for task pairs which share an explicit precedence relationship
between them. For the remaining mutually independent task pairs, this constraint is
enforced as follows:

∀Ti, Tj (i = 1, . . . , n − 1; j = i + 1, . . . , n) | Ti and Tj do not have an ancestor-
descendant relationship,

Si +
p∑
r=1

eir ∗Xir − Sj − C ∗
(
1− αij

)
− C ∗

1−
p∑
r=1

Zijr

 ≤ 0 (6.20)

Sj +
p∑
r=1

ejr ∗Xjr − Si − C ∗ αij − C ∗

1−
p∑
r=1

Zijr

 ≤ 0 (6.21)

where, Zijr = Xir ∗Xjr and C is a sufficiently large constant.

Here, Constraint 6.20 enforces non-overlap between the executions of Ti and Tj,
when Ti starts before Tj. Similarly, Constraint 6.21 enforces this property when Tj

starts before Ti. The last term in the LHS of both Equations 6.20 and 6.21 vanishes,
when Ti and Tj are assigned onto the same processor Pr. Otherwise, the large constant
C makes both the constraints to be trivially satisfied.

It may be noted that the second last term in the LHS of Equation 6.20 (i.e., C ∗
(1 − αij)) vanishes when αij = 1. That is, Ti starts before Tj. Otherwise, the con-
stant C makes the constraint to be trivially satisfied. Similarly, the term (C ∗ αij) in
Equation 6.21 vanishes when Tj starts before Ti and makes the constraint to be trivially
satisfied, otherwise.

When Ti starts before Tj on the same processor Pr (i.e., Zijr = αij = 1), Con-
straint 6.20 enforces Tj to commence after the completion of execution of Ti. A similar
set of arguments hold for Constraint 6.21 as well.

Similarly, the transmission of any two messages Mi and Mj assigned onto the same
bus cannot be overlapped in time. The dependency constraints discussed above auto-
matically enforce the non-overlapping property for message pairs which share an ex-
plicit precedence relationship between them. For the remaining mutually independent
message-pairs, this constraint is enforced as follows:

134

6.4 ILP Formulation: ILP-NC

∀Mi,Mj (i = 1, . . . ,m− 1; j = i+ 1, . . . ,m) | Mi and Mj do not have an ancestor-
descendant relationship,

Si +
p+b∑

r=p+1
cir ∗Xi′r − Sj − C ∗

(
1− βij

)
− C ∗

1−
p+b∑

r=p+1
Zi′j′r

 ≤ 0 (6.22)

Sj +
p+b∑

r=p+1
cjr ∗Xj′r − Si − C ∗ βij − C ∗

1−
p+b∑

r=p+1
Zi′j′r

 ≤ 0 (6.23)

Where i′ = n+ i, j′ = n+ j and Zi′j′r = Xi′r ∗Xj′r.

6.4.4 Linearization of Non-linear Term

The non-linear variables Zijr = Xir ∗ Xjr in Equations 6.16, 6.17, 6.18, 6.20 and 6.21
can be linearized using the following four inequalities.

Zijr ≤ Xir (6.24)

Zijr ≤ Xjr (6.25)

Zijr ≥ Xir +Xjr − 1 (6.26)

Zijr ∈ {0, 1} (6.27)

Similarly, Zi′j′r = Xi′r ∗ Xj′r in Equations 6.22 and 6.23 can be linearize using above
four equations, where i = i′ and j = j′.

6.4.5 Deadline Constraint:

All tasks in the PTG have to complete their execution within the deadline D. This can
be satisfied by restricting the finish time of the sink node to be at most the deadline D.
This constraint can be written as,

Sn +
p∑
i=1

(enr ∗Xnr)− 1 ≤ D (6.28)

135

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

6.4.6 Objective Function

Our objective is to minimize the makespan (schedule length) while satisfying all schedu-
lability constraints. The objective function can be written as:

Minimize Sn +
p∑
i=1

(enr ∗Xnr)− 1 (6.29)

subject to constraints presented in Equations 6.15 - 6.28.

6.4.7 Complexity Analysis

The complexity analysis for ILP-NC is presented in Table 6.5. The total complexity of
ILP-NC (in terms of the number of constraints) is O(max{n2 × p,m2 × b}). It may be
noted that the complexity of ILP-NC is independent of the deadline of a PTG.

Constraint
Type

Equation
No. #Constraints

#Variables
Per

Constraint

Unique Resource
6.15 O(n) O(p)
6.16 O(m) O(max{p, b})

Dependency
6.17 O(m) O(p)
6.18 O(m) O(max{p, b})
6.19 O(m) O(p)

Non-overlapping

6.20 O(n2) O(p)
6.21 O(n2) O(p)
6.22 O(m2) O(b)
6.23 O(m2) O(b)

Deadline 6.28 O(1) O(p)

Linearization
6.24 O(max{n2 × p,m2 × b}) O(1)
6.25 O(max{n2 × p,m2 × b}) O(1)
6.26 O(max{n2 × p,m2 × b}) O(1)

Table 6.5: Complexity of ILP-NC

136

6.5 Heuristic: CC-TMS

Example (contd.): Applying ILP-NC procedure discussed above on our example PTG
G (Figure 6.2a), we obtain the schedule represented through the gantt chart depicted in
Figure 6.4. The optimal schedule produced (16) is same as that obtained using ILP-ETR.
However, it is worth noting that ILP-NC generates only 286 constraints and takes 0.1
seconds to produce the solution. On the contrary, ILP-ETR produced 4927 constraints
and takes 0.8 seconds.

T3P1

T1 T2T4 T5 T6P2

B1

M5M2B2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

16

time
(ms)

Figure 6.4: The schedule for the PTG (Figure 6.2a) using ILP-NC

Though, ILP-NC shows an appreciable improvement in terms of scalability compared
to ILP-ETR, it also suffers from high computational overheads (in terms of running time)
as the number of nodes in a PTG and/or the number of resources, increase. For example,
in our experiments, we have observed that the ILP-NC takes more than ∼4 hrs to find
feasible schedules for PTGs with ∼80 nodes, on a platform with four heterogeneous
processors and two shared buses. It may be noted that such large time overheads may
often not be affordable, especially when multiple quick design iterations are needed
during design space exploration. Therefore, we propose a low-overhead heuristic namely,
Contention Cognizant Task and Message Scheduler (CC-TMS) in the next section.

6.5 Heuristic: CC-TMS

Typically, list scheduling based heuristic techniques have been employed to compute fea-
sible schedules for PTGs executing on heterogeneous platforms. Some examples of this

137

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

category of schemes are HEFT [6], PEFT [1] and HSV [11]. These algorithms try to gen-
erate an offline schedule for the given PTG executing on a fully-connected heterogeneous
platform with the goal of obtaining minimum makespans, while ensuring precedence as
well as resource constraints. On the contrary, our work considers a heterogeneous dis-
tributed platform which uses shared buses for interconnecting processing elements. For
this platform setting, we devise a heuristic based algorithm CC-TMS. Before presenting
the algorithm, we define a few related attributes such as upward rank, Earliest Start
Time (EST) and Earliest Finish Time (EFT).

6.5.1 Upward Rank

The upward rank of a node in G is determined in a recursive fashion by traversing PTG
upwards, starting from the sink node Tn towards the source node T1. For Tn, the upward
rank is defined as:

ranku(Tn) = en (6.30)

where, en denotes the average execution time of Tn over all processors in P . For the rest
of the task and message nodes, upward rank is determined as:

ranku(Ti) = ei + max
Mk∈succ(Ti)

ranku(Mk) (6.31)

where, succ(Ti) represents the message nodes which immediately succeed task Ti and,

ranku(Mk) = ck + ranku(Tj) (6.32)

where, ck is the average data transmission time of message node Mk over all buses in B,
and ranku(Tj) is the rank of the successor task node Tj of Mk.

6.5.2 Earliest Start and Finish Time

EST (Ti, Pr) of a task Ti on processor Pr denotes the earliest time at which Ti can
start on Pr. Similarly, EST (Mk, Br) denotes the earliest time at which transmission of
a message Mk can commence on bus Br. We recursively compute EST of each node

138

6.5 Heuristic: CC-TMS

starting from the source node of PTG G. The EST of the source node (T1) which is a
task node is,

EST (T1, Pr) = 0 (6.33)

The EST of other task nodes are computed as,

EST (Tj, Pr) = max{avail[Pr], max
Mk∈pred(Tj)

AFT (Mk)} (6.34)

where, avail[Pr] denotes the earliest instant at which Pr is available and AFT (Mk)
represents the actual time at which the predecessor message Mk finishes transmission.
The EST of the message nodes are computed as,

EST (Mk, Br) = max{avail[Br], AFT (Ti)} (6.35)

where, avail[Br] denotes the earliest instant at which Br becomes available for message
transmission and AFT (Ti) is the actual time at which the predecessor task Ti of Mk

finishes execution.
The EFT of all task and message nodes are computed as,

EFT (Ti, Pr) = EST (Ti, Pr) + eir (6.36)

EFT (Mk, Br) = EST (Mk, Br) + ckr (6.37)

For any message node Mk, when both its predecessor as well as successor tasks Ti and Tj
are scheduled onto the same processor, then existence of the message node Mk becomes
immaterial and is not transmitted. That is, EST (Mk, Br) = EFT (Mk, Br) = AFT (Ti).

6.5.3 Co-scheduling Tasks and Messages

The proposed algorithm called CC-TMS is given in Algorithm 4. Initially, the CC-TMS
algorithm computes the upward rank (ranku) of each node (line 1) and makes a priority
list (TaskPriorityList) of the task nodes in PTG G sorted in non-increasing order of
the tasks’ upward ranks (line 2). Next, it initializes avail[Pr] to 0 for each Pr ∈ P and
avail[Br] to 0 for each Br ∈ B (line 3). At any given iteration, the first node in the

139

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

ALGORITHM 4: CC-TMS
Input: PTG G, Platform ρ
Output: Schedule of task and message nodes (Start time of each node and

mapping of tasks/messages to processors/buses)
1 Compute upward rank (ranku) of each node in G
2 Let TaskPriorityList be the list of tasks arranged in non-increasing order of

the tasks’ upward ranks
3 For each processor Pr ∈ P and bus Br ∈ B, set avail[Pr] and avail[Br] to 0
4 while TaskPriorityList is non-empty do
5 Select the first task Ti, from the list TaskPriorityList
6 Let MsgPriorityListi be the list consisting of all predecessor message

nodes of task Ti arranged in non-increasing order of ranku
7 for each processor Pr ∈ P do
8 Tentatively assign Ti on Pr
9 For each bus, set tempAvail[Br] = avail[Br]

10 for each Mj ∈MsgPriorityListi do
11 for each bus Bk do
12 Compute EFT (Mj, Bk)
13 Tentatively assign Mj on that bus Bk for which EFT (Mj, Bk) is

minimum and update tempAvail[Bk] as EFT (Mj, Bk)
14 Compute EFT (Ti, Pr)
15 Actually assign Ti on that Pr on which EFT (Ti, Pr) is minimum and

update avail[Pr] as EFT (Ti, Pr)
16 Given Ti on Pr, assign all its predecessor message nodes on buses such that

their EFT’s are minimized and update avail[Br] accordingly
17 Remove Ti from TaskPriorityList

current task priority list is selected and scheduled along with its predecessor message
nodes (line nos 4 to 17).

The steps within each iteration subsequent to the selection of a task node Ti is
explained as follows: First, Algorithm 4 computes the priority list MsgPriorityListi

consisting of all predecessor message nodes of Ti, arranged in non-increasing order of
their upward ranks (line 6). Then, Ti is tentatively assigned on each processor Pr ∈ P
(line 8) and for any such tentative allocation, each predecessor message node Mj is
tentatively assigned to that bus Bk ∈ B for which EFT value of the message node Mj

is minimum (lines 10 to 13). The message-to-bus allocation is conducted in the order
as prescribed by the message priority list. Based on these message node allocations,
EFT (Ti, Pr) is computed for all Pr ∈ P . Finally, Ti is actually assigned on the processor

140

6.5 Heuristic: CC-TMS

(say, Px) for which its EFT is minimum. Given this allocation of Ti on Px, its predecessor
message nodes are assigned on buses such that their EFT’s are minimized (line 16).

6.5.4 Complexity Analysis

The computation of the upward ranks for the nodes in PTG G requires a single traversal
pass over all nodes and consumesO(n+m) time (line no. 1). Creation of TaskPriorityList
and MsgPriorityListi for each task Ti can be computed along with the generation of the
nodes’ rank values. Through additional list data structures and limited sorting over
small constant number of elements, these lists can be obtained within constant time
additional complexity on average, over the O(n+m) overhead incurred for upward rank
generation. The initialization of avail[Pr] and avail[Br] takes O(p+ b) time (line no. 3).
Next, it may be observed that the complexity of the while loop (line nos. 4 to 17) is
dominated by the total complexity of line no. 12 within the inner-most for loop. This
total complexity may be obtained by multiplying the complexity of EFT () function
at this step with the total number of times line no. 10 is executed in the algorithm.
From Equations 6.36 and 6.34, it may be inferred that EFT (Mj, Bk) incurs constant
time complexity. Also, we see that the number of times line no. 10 is executed is:
(n × p × (n − 1) × b), where n denotes the total number of times the while loop is
executed, while p, (n − 1), and b denote the number of times the for loops at line nos.
7, 10, and 11 are executed, respectively. Hence, the total complexity of the while loop
is given by O(n× p× (n− 1)× b). Therefore, the complexity of the CC-TMS algorithm
may be represented as O(n2 × p × b). This time complexity is slightly higher than the
running time of HEFT [6] and PEFT [1] algorithms (O(n2 × p)) since these algorithms
assume fully-connected platform against a shared bus system as considered in this work.

T1 T2 T3 T4 T5 T6 M1 M2 M3 M4 M5 M6 M7

24 18 14 7 8 2.5 20.5 17.5 11 11.5 10.5 4.5 5

Table 6.6: Upward rank of nodes in PTG G (Figure 6.2)

141

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

T3 T4 T6P1

T1 T2 T5P2

M3B1

M2 M5 M7B2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

17

time
(ms)

Figure 6.5: The schedule for the PTG (Figure 6.2a) using CC-TMS

6.5.5 Example

Refer to the PTG shown in Figure 6.2a. The CC-TMS algorithm (Algorithm 4) initially
computes the upward rank of each node (listed in Table 6.6) and makes a sorted priority
list of task nodes (TaskPriorityList): {T1, T2, T3, T5, T4, T6}. Time of availability for
the processors and buses are set to, avail[P1] = avail[P2] = avail[B1] = avail[B2] = 0.
The execution of the algorithm is as follows:

T1 : The CC-TMS algorithm selects task T1 from the task priority list (TaskPriorityList).
Since T1 does not have any predecessors, its message priority list (MsgPriorityList1)
is empty.

P1 : EST (T1, P1) = 0, EFT (T1, P1) = 0 + 4 = 4

P2 : EST (T1, P2) = 0, EFT (T1, P2) = 0 + 3 = 3.

Since EFT (T1, P1) > EFT (T1, P2), T1 is assigned to processor P2 with start time
0. Availability of processor P2 is updated to avail[P2] = 3. Then, T1 is removed
from the task priority list.

T2 : Next, task T2 is selected from the task priority list. The message priority list of
task T2 is {M1}.

P1 : If T2 is assigned on processor P1 then tempAvail[B1] = tempAvail[B2] = 0;

142

6.6 Experimental Evaluation

(a) (b) (c) (d)

Figure 6.6: (a) Gaussian Elimination [6], (b) Epigenomics [2] (c) Laplace [4] (d) Stencil [4]

EST (M1, B1) = EST (M1, B2) = 3; EFT (M1, B1) = 3+2 = 5, EFT (M1, B2) =
3 + 3 = 6; tempAvail[B1] = 5; EST (T2, P1) = 5, EFT (T2, P1) = 5 + 8 = 13.

P2 : If T2 is assigned on processor P2 then M1 becomes invalid. EST (M1, B1) =
EST (M1, B2) = 3; EFT (M1, B1) = EFT (M1, B2) = 3; EST (T2, P2) = 3,
EFT (T2, P2) = 3 + 5 = 8.

Since EFT (T2, P1) > EFT (T2, P2), T2 is assigned to processor P2 and the message
M1 is discarded (as predecessor T1 and successor T2 of M1 are scheduled on the
same processor). Availability of processor P2 is updated to avail[P2] = 8.

Similarly, the schedule generation proceeds for the rest of the task and message nodes.
The resulting list schedule is shown in Figure 6.5. It may be noted that the obtained
schedule length is 17 (slightly greater than the optimal makespan (16) returned by both
ILP-ETR and ILP-NC).

6.6 Experimental Evaluation

The performance of the strategies proposed in this work, ILP-ETR, ILP-NC and CC-TMS,
has been experimentally evaluated using real-world benchmark PTGs.

Experimental Setup: Four benchmark PTGs namely, Gaussian Elimination [6],
Epigenomics [2], Laplace [4] and Stencil [4], have been employed to experimentally test

143

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

and compare the algorithms. Figures 6.6a, 6.6b, 6.6c and 6.6d, respectively show the
structural illustrations of the four PTGs considered.

• The task graph representation of a Gaussian Elimination equation solver is de-
termined by the number (χ) of linear equations which the algorithm attempts to
solve. A Gaussian Elimination task graph contains ((χ2 + χ − 2)/2) task nodes
and (χ2 − χ− 1) message nodes when the number of equations to be solved is χ.
As example, Figure 6.6a shows a Gaussian Elimination task graph containing 14
task nodes and 19 message nodes when χ = 5.

• Epigenomics represents a procedure for genome sequencing operations in a parallel
pipelined manner. Given the number of parallel branches γ in an Epigenomics
PTG, the number of task nodes and message nodes in it are given by (4γ+ 4) and
(5γ+2), respectively. As example, for the Epigenomics PTG shown in Figure 6.6b,
the number of parallel branches, γ = 3 and therefore, the graph has 16 task nodes
and 17 message nodes.

• The Laplace PTG corresponds to the Laplace algorithm for equation solving with
the number of task and message nodes being represented as ϕ2 and (2ϕ2 − 2ϕ),
respectively, where ϕ is the size of matrix given as input to the algorithm. As ex-
ample, for the Laplace PTG shown in Figure 6.6c, the number of parallel branches
ϕ = 4 and so, the graph has 16 task nodes and 24 message nodes.

• The Stencil PTG is associated with the procedure for solving partial differential
equations. The solution proceeds level-wise with each level containing ξ task nodes.
The Stencil PTG corresponding to a solution which involves λ levels, contains
(λ× ξ) task nodes and [(λ− 1)× (3ξ− 2)] message nodes. In the experiments, we
have assumed λ = ξ in the interest of simplicity. For example, Figure 6.6d shows
a Stencil task graph containing 16 task nodes and 30 message nodes (λ = 4).

The data associated with the PTGs and also the computing platform, have been
varied over carefully chosen ranges of values to evaluate and exhibit the efficacy of the

144

6.6 Experimental Evaluation

proposed algorithms on various possible scenarios that they may encounter in prac-
tice: (1) Matrix Sizes: χ = {3, 4, 5, 6} (Gaussian Elimination); Parallel Branches:
γ = {2, 3, 4, 5} (Epigenomics); Matrix Sizes: ϕ = {2, 3, 4, 5} (Laplace); Number of
Levels: λ = {2, 3, 4, 5} (Stencil). (2) Number of processors: Platforms consisting of
p = {2, 4, 6, 8} processors have been considered. (3) Number of buses: Platforms con-
sisting of b = {1, 2, 3, 4} buses have been considered. (4) Communication to Computation
Ratio CCR = {0.5, 1, 1.5, 2} (CCR denotes the ratio of the average cost of communica-
tion to computation for the given PTG). (5) A uniform random distribution ([10 ms,
30 ms]) has been used to generate execution times eir for each task(Ti)-to-processor(Pr)
mapping. (6) Another uniform random distribution ([10 ms, 30 ms]) is used to gener-
ate communication time ckr for each message(Mk)-to-bus(Br) mapping. Based on the
desired CCR required in a given scenario, the obtained communication times are ac-
cordingly scaled. (7) Deadline Extension Ratio (DR ∈ {1, 1.25, 1.5, 1.75, 2}). Here, the
parameter DR refers to the ratio between the given deadline corresponding to the exe-
cution of a PTG and its obtained optimal schedule length. The CPLEX optimizer [10]
version 12.6.2.0 has been used. All experiments have been carried-out on a system hav-
ing Intel(R) Xeon(R) CPU running Linux Kernel 3.10.0-693.21.1.el7.x86 64.

Performance Metric: Performance evaluation of the proposed CC-TMS algorithm
and its comparison with ILP based solution has been conducted with the metric called
Makespan Ratio which is defined as,

Makespan Ratio = Optimal Makespan(ILP)
Heuristic Makespan(CC − TMS) × 100 (6.38)

Experiment-1: Comparing ILP-ETR and ILP-NC: We set p to 4, b to 2 and
CCR to 1. The matrix size (χ) for Gaussian Elimination, number of parallel branches
(γ) for Epigenomics, matrix size (ϕ) for Laplace and number of levels (λ) for Stencil)
are set to 3 and 4. The running time of both ILP-ETR and ILP-NC, when the deadline

145

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

extension ratio is varied from 1 to 2, is shown in the Table 6.7. It may be seen from the
table that ILP-NC comprehensively outperforms ILP-ETR for all scenarios considered.
The results also show that run-times corresponding to ILP-ETR are significantly more
sensitive to the increase in both the number of nodes as well as deadline extension rate,
compared to ILP-NC. Further, it may be observed that run-times of the ILP schemes
differ vastly between PTGs of different types. For example, let us consider Guassian
Elimination and Stencil PTGs with shape parameter = 3 and deadline extension rate
= 1. In this scenario, ILP-ETR takes 0.94s and 11m : 6s for Guassian Elimination and
Stencil, respectively. Similarly, ILP-NC takes 0.7s and 23.23s for Guassian Elimination
and Stencil. This variation in the running times of ILPs for different PTG types is
mainly due to the difference in their internal structures. More specifically for a given
shape parameter, it may be observed that (1) the structure (in terms of the number
of nodes and edges) of Stencil (refer Figure 6.6d) is far denser than Guassian Elimi-
nation (refer Figure 6.6a) and (2) the number of constraints and variables that must
be simultaneously taken into consideration to compute a solution is higher for Sten-
cil compared to Guassian Elimination. Consequently, computations times required to
generate optimal solutions for Stencil increase steeply as the number of nodes increase,
thus exhibiting poor scalability. On the contrary, it may be observed from Table 6.7
that computation times for the other types of PTGs namely, Guassian Elimination,
Epigeneomics, Laplace, are significantly lower compared to Stencil, for a similar number
of total nodes. Thus, it may be inferred from the results that Guassian Elimination,
Epigeneomics, Laplace, exhibit much better scalability than Stencil. Further, it may
be noted that the running-time of ILP-NC for a particular PTG with a given shape
parameter, remains almost constant independent of the laxity available before deadline.
For example, the running-time of ILP-NC for Stencil remains as ∼ 23s when the value
of the shape parameter λ is 3, irrespective of the variation in deadline extension rate.

Experiment-2: Varying the number of processors: The results of this exper-
iment is depicted in Figure 6.7. Here, the number of processors (p) is varied from 2 to
8, matrix size χ (Gaussian Elimination) between 3 and 6, number of parallel branches

146

6.6 Experimental Evaluation

PT
G

Sh
ap

e
Pa

ra
m

et
er

Ta
sk

N
od

es
M

es
sa

ge
N

od
es

To
ta

l
N

od
es

IL
P

Ve
rs

io
n Deadline Extension Ratio

1 1.25 1.5 1.75 2

G
au

ss
ia

n
El

im
in

at
io

n
χ

=
3

5 5 10 ILP-ETR 0.94s 20.1s 2m:19s 7m:27s 21m:9s
ILP-NC 0.7s 0.65s 0.49s 0.68s 0.73s

χ
=

4

9 11 20 ILP-ETR 3m:8s 32m:30s 2h:43m:9s 7h:33m:58s 15h:4m:10s
ILP-NC 4.03s 3.94s 4.08s 4.02s 3.99s

Ep
ig

en
eo

m
ic

s

γ
=

3

16 17 33 ILP-ETR 29m:24s 4h:21m:9s 19h:39m:38s @ @
ILP-NC 56.43s 56.58s 55.33s 55.54s 55.76s

γ
=

4

20 22 42 ILP-ETR 20h:11m:19s @ @ @ @
ILP-NC 2m:50s 2m:50s 2m:50s 2m:49s 2m:51s

La
pl

ac
e

ϕ
=

3

9 12 21 ILP-ETR 4h:43m:30s @ @ @ @
ILP-NC 11.28s 11.48s 11.45s 11.34s 11.26s

ϕ
=

4

16 24 40 ILP-ETR @ @ @ @ @
ILP-NC 5m:50s 5m:50s 5m:51s 5m:52s 5m:50s

St
en

ci
l

λ
=

3

9 14 23 ILP-ETR 11m:6s 21h:31m:29s @ @ @
ILP-NC 23.23s 23.06s 22.95s 22.97s 23.13s

λ
=

4

16 30 46 ILP-ETR @ @ @ @ @
ILP-NC 6h:40m:58s 6h:40m:6s 6h:39m:14s 6h:38m:24s 6h:37m:9s

Table 6.7: Running time of ILP-ETR and ILP-NC. The symbol @ represents run-times
greater than 24 hours

γ for (Epigenomics) from 2 to 5, matrix size ϕ (Laplace) between 2 and 5 and matrix
size λ (Stencil) from 2 to 5, while keeping the number of buses (b) to be fixed at 2 and
CCR at 1. We observe that for any given number of parallel branches (Epigenomics) or
fixed matrix size (Gaussian Elimination, Laplace, Stencil), the makespan ratio becomes
lower with increase in the number of processors. This may be attributed to the fact that
as the number of processors increase, CC-TMS gains more flexibility to assign tasks on
different processors in the platform. However, this does not lead to the reduction in the
number of message nodes and ultimately pulling down the performance of CC-TMS. In
comparison, the ILP remains mostly unaffected by changes in the number of processors.
For example, in Gaussian Elimination (Figure 6.7a) with Matrix Size = 3, the Makespan
Ratio for p = 2 and p = 8 are ∼96% and ∼91%, respectively. It can also be noted that

147

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

as the number of nodes becomes higher, the heterogeneity in execution times and com-
munication times in the PTG also increases. This results in the poorer performance of
CC-TMS as compared to the ILP scheme.

 82

 84

 86

 88

 90

 92

 94

 96

 2 4 6 8

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Processor

Matrix Size = 3
Matrix Size = 4
Matrix Size = 5
Matrix Size = 6

(a) Gaussian Elimination

 82

 84

 86

 88

 90

 92

 94

 2 4 6 8

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Processor

Parallel Branch = 2
Parallel Branch = 3
Parallel Branch = 4
Parallel Branch = 5

(b) Epigenomics

 82

 84

 86

 88

 90

 92

 94

 96

 2 4 6 8

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Processor

Matrix Size = 2
Matrix Size = 3
Matrix Size = 4
Matrix Size = 5

(c) Laplace

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Processor

Matrix Size = 2
Matrix Size = 3
Matrix Size = 4
Matrix Size = 5

(d) Stencil

Figure 6.7: Effect of varying processors

Experiment-3: Varying the number of buses: For this experiment, the number
of buses (b) has been increased from 1 to 4, matrix size χ (Gaussian Elimination) is
varied between 3 and 6, number of parallel branches γ (Epigenomics) between 2 and 5,
matrix size ϕ (Laplace) between 2 and 5 and matrix size λ (Stencil) from 2 to 5, while
keeping the number of processors (p) fixed to 4, and CCR to 1. Figure 6.8 illustrates
the obtained results for this experiment. We observe that for any specific matrix size

148

6.6 Experimental Evaluation

(Gaussian Elimination, Stencil, Laplace) or number of parallel branches (Epigenomics),
the Makespan Ratio increases with increase in the number of buses. Decrease in resource
contention w.r.t. message transmission which occurs as the number of buses increase,
may be considered to be the cause for this phenomena. The result is a consequent
increase in overall Makespan Ratio. As example, for Gaussian Elimination (Figure 6.8a),
with Matrix Size = 3, the Makespan Ratios are ∼89% and ∼95% for b = 1 and b = 4,
respectively.

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 1 2 3 4

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Bus

Matrix Size = 3
Matrix Size = 4
Matrix Size = 5
Matrix Size = 6

(a) Gaussian Elimination

 76

 78

 80

 82

 84

 86

 88

 90

 92

 1 2 3 4

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Bus

Parallel Branch = 2
Parallel Branch = 3
Parallel Branch = 4
Parallel Branch = 5

(b) Epigenomics

 78

 80

 82

 84

 86

 88

 90

 92

 94

 1 2 3 4

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Bus

Matrix Size = 2
Matrix Size = 3
Matrix Size = 4
Matrix Size = 5

(c) Laplace

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 2 3 4

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

#Bus

Matrix Size = 2
Matrix Size = 3
Matrix Size = 4
Matrix Size = 5

(d) Stencil

Figure 6.8: Effect of varying buses

Experiment-4: Varying CCR: We vary CCR between 0.5 and 2, matrix size χ
(Gaussian Elimination) between 3 and 6, number of parallel branches γ (Epigenomics)

149

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

between 2 and 5, matrix size ϕ (Laplace) between 2 and 5 and matrix size λ (Stencil)
between 2 and 5, while fixing the number of processors (p) and buses (b) to 4 and 2,
respectively. Figure 6.9 shows the results. From the figure, we observe that for any
particular matrix size (Gaussian Elimination, Stencil, Laplace) or number of parallel
branches (Epigenomics), the Makespan Ratio decreases as CCR becomes higher. This
is because, with the increase in CCR, the overall contention for message transmission
increases, resulting in an overall decrease in the Makespan Ratio. As example, for Gaus-
sian Elimination (Figure 6.9a) with Matrix Size = 3, the Makespan Ratios are ∼98%
and ∼88% for CCR = 0.5 and CCR = 2, respectively.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 0.5 1 1.5 2

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

CCR

Matrix Size = 3
Matrix Size = 4
Matrix Size = 5
Matrix Size = 6

(a) Gaussian Elimination

 78

 80

 82

 84

 86

 88

 90

 92

 94

 0.5 1 1.5 2

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

CCR

Parallel Branch = 2
Parallel Branch = 3
Parallel Branch = 4
Parallel Branch = 5

(b) Epigenomics

 80

 82

 84

 86

 88

 90

 92

 94

 96

 0.5 1 1.5 2

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

CCR

Matrix Size = 2
Matrix Size = 3
Matrix Size = 4
Matrix Size = 5

(c) Laplace

 65

 70

 75

 80

 85

 90

 95

 100

 0.5 1 1.5 2

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

CCR

Matrix Size = 2
Matrix Size = 3
Matrix Size = 4
Matrix Size = 5

(d) Stencil

Figure 6.9: Effect of varying CCR

150

6.6 Experimental Evaluation

Experiment-5: Running time comparison: The performance of the designed
algorithms with respect to incurred running times have been evaluated by measuring
their actual average run-times over various data sets. Then, we have determined the
speedup achieved by CC-TMS over ILP-NC. That is,

speedup = Running time of ILP-NC
Running time of CC-TMS (6.39)

In Table 6.8, we present the speedups achieved by CC-TMS over ILP-NC, varying
the number of processors (p) between 2 and 8, buses (b) between 1 and 4, matrix size χ
(Gaussian Elimination) between 3 and 5, number of parallel branches γ (Epigenomics)
from 2 to 4, matrix size ϕ (Laplace) from 2 to 4 and matrix size λ (Stencil) from 2 to
4, while keeping CCR fixed to 1. The actual speedups are 105 times the values (say, x)
shown in the table (that is, actual speedup = x × 105 times). Figure 6.10 shows the
graphical representation of the obtained results for Laplace and Stencil PTGs. It may
be seen that speedups increase with the number of nodes, processors and/or buses. The
reason may be attributed to the high complexity of the ILP-NC solution along with
its high sensitivity to the number of nodes, processors and buses. In comparison, the
complexity of CC-TMS exhibits significantly lower sensitivity to the number of tasks,
processors and buses.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 2 4 6 8

R
u

n
n

in
g

 T
im

e
 (

s
e

c
,

lo
g

 s
c
a

le
)

#Processors

Laplace: ϕ = 2
Laplace: ϕ = 3
Laplace: ϕ = 4
Stencil: λ = 2
Stencil: λ = 3
Stencil: λ = 4

(a) Varying Processors

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1 2 3 4

R
u

n
n

in
g

 T
im

e
 (

s
e

c
,

lo
g

 s
c
a

le
)

#Buses

Laplace: ϕ = 2
Laplace: ϕ = 3
Laplace: ϕ = 4
Stencil: λ = 2
Stencil: λ = 3
Stencil: λ = 4

(b) Varying Buses

Figure 6.10: Speedup of CC-TMS compared to ILP-NC

Experiment-6: Comparison with related works: This experiment attempts to

151

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

PTG Matrix
Size

Speedup (x× 105)
#Processors

(#Buses = 2)
#Buses

(#Processors = 4)

2 4 6 8 1 2 3 4

Gaussian
Elimination

χ = 4 0.05 0.11 0.19 0.23 0.08 0.11 0.12 0.12
χ = 5 0.29 1.32 1.67 1.86 1.45 1.32 1.2 1.13
χ = 6 3.48 10.15 20.83 24.44 11.08 10.15 10.16 12.64

Epigenomics
γ = 2 0.05 0.27 0.42 0.51 0.15 0.27 0.27 0.27
γ = 3 0.61 1.51 1.85 2.42 1.24 1.51 1.38 1.37
γ = 4 11.74 10.88 9.47 14.57 12.22 10.88 10.48 9.83

Laplace
ϕ = 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ϕ = 3 0.06 0.26 0.44 0.71 0.17 0.26 0.29 0.28
ϕ = 4 2.33 9.74 32.95 42.97 8.04 9.74 11.9 12.68

Stencil
λ = 2 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.02
λ = 3 0.18 1.23 1.96 2.73 0.69 1.23 1.2 1.23
λ = 4 15.93 1089.09 6702.85 5913.86 112.29 1089.09 1099.38 1223.74

Table 6.8: Running Time Comparison (Speedup of CC-TMS compared to ILP-NC)

exhibit the relative performance of CC-TMS, particularly in relation to the use of shared
buses in CC-TMS against dedicated communication channels in HEFT [6] and PEFT [1].
For this purpose, we have conducted experiments with two different benchmark PTGs
namely, Laplace and Stencil, which significantly differ in terms of their demand for
communication resources. Comparing the structures of these two benchmark PTGs, it
may be observed that the ratio of the number of message nodes to the number of task
nodes is higher for Stencil compared to Laplace. Thus, Stencil is more I/O bounded
and significantly more intensive in terms of its demand for communication resources,
compared to Laplace. In the experiment, we have fixed the matrix size for Laplace
(ϕ) to 9 (n = 81, m = 144) and for Stencil (λ) to 8 (n = 64, m = 154). Execution
times of each task node on the different processors are randomly chosen from a uniform
distribution [10, 30]. CCR is varied from 0.25 to 1. We set the number of processors (p)

152

6.6 Experimental Evaluation

to 8, and the number of buses (b) to 4 (for CC-TMS).
While CC-TMS assumes a shared bus communication platform, PEFT and HEFT are

oriented towards fully-connected processing platforms. We have conducted experiments
assuming the communication platform to be homogeneous as well as heterogeneous. All
the communication mediums (shared buses for CC-TMS, dedicated channels for HEFT
and PEFT) are assumed to have the same bandwidth for the homogeneous case. On
the other hand, bandwidths of the communication mediums have been randomly chosen
from a uniform distribution [0.9, 1.1] when a heterogeneous communication platform is
considered. Finally, message sizes are appropriately derived from the generated execu-
tion times, such that the desired CCR is achieved for a given average communication
bandwidth. We have used Makespan Ratio as the metric for comparison:

Makespan Ratio = HEFT or PEFT Makespan

CC − TMS Makespan

 80

 90

 100

 110

 0.25 0.5 0.75 1

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

CCR

HEFT: Homogeneous
PEFT: Homogeneous

HEFT: Heterogeneous
PEFT: Heterogeneous

(a) Laplace

 40

 50

 60

 70

 80

 90

 100

 0.25 0.5 0.75 1

M
a

k
e

s
p

a
n

 R
a

ti
o

 (
in

 %
)

CCR

HEFT: Homogeneous
PEFT: Homogeneous

HEFT: Heterogeneous
PEFT: Heterogeneous

(b) Stencil

Figure 6.11: Comparison among CC-TMS, HEFT and PEFT

Figures 6.11a and 6.11b present the experimental results depicting the relative perfor-
mance of CC-TMS on the Laplace and Stencil PTGs, respectively. Although bandwidths
for the shared buses in CC-TMS and the communication channels in HEFT/PEFT have
been generated assuming the same degree of heterogeneity, CC-TMS comes with the

153

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

flexibility of being able to choose a bus which has better affinity for a message (rel-
atively lower transmission time), because each bus is connected to all processors. In
comparison, HEFT/PEFT with its fully interconnected platform, is forced to transmit a
message from a source to a destination processor, through the dedicated communication
channel between them, irrespective of the affinity of this message to the channel. Due
to this flexibility of choosing a bus that takes less transmission time, CC-TMS performs
relatively better especially when contention for the shared buses is comparatively low.
This may be observed to happen with lower CCR values for both the Laplace and Sten-
cil PTGs in Figures 6.11a and 6.11b. In addition, due to the relatively higher number
of edges in Stencil compared to Laplace, inter-task dependencies are higher in Stencil
than Laplace. Consequently, the average number of ready to execute tasks at any given
time is higher for Laplace, allowing better utilization of processor resources. Due to
this lower communication resource demand, CC-TMS is generally seen to perform sig-
nificantly better with Laplace compared to Stencil. In fact, from the results obtained
for Laplace (Figure 6.11a for the case when communication resources are heterogeneous,
CC-TMS is seen to perform better than HEFT and at par with PEFT. However, when
the communication resources (buses for CC-TMS, communication channels for HEFT
and PEFT) are homogeneous, the advantage of CC-TMS derived through the ability
to flexibly choose bus resources, has no effect. Consequently, relative performance of
CC-TMS degrades for both Laplace and Stencil, as revealed in Figure 6.11. Again, due
to its lower I/O boundedness, this degradation is less severe for Laplace (Figure 6.11a)
than Stencil (Figure 6.11b).

Experiment-7: Scalability of CC-TMS: To show the scalability of CC-TMS, we
have conducted an experiment with the Laplace and Stencil benchmark PTGs, where
we have plotted variation in the run-times of CC-TMS as the number of nodes in the
PTGs is varied from ∼50 to ∼200. For Laplace, we have varied the matrix size (ϕ) from
5 (n = 25, m = 40) to 9 (n = 81, m = 144). Similarly, matrix size (λ) for Stencil has
been varied between 4 (n = 16, m = 30) and 8 (n = 64, m = 154). CCR has been
fixed to 1. Figure 6.12a shows the results for run-time of CC-TMS as the number of

154

6.7 Case Study: Traction Controller

processors (p) is varied from 2 to 8, while fixing the number of buses (b) at 2. It can be
seen that the running-time of CC-TMS increases monotonically as the number of nodes
increases. In Figure 6.12b, we show the variation in run-times as the number of buses is
varied from 1 to 4, while keeping the number of processor fixed to 4. From the obtained
results, we see that run-times of CC-TMS increase at a very moderate pace with respect
to increase in the number of PTG nodes, processors, or buses. It may be noted that
even for large PTGs containing about 200 nodes, solution generation times of CC-TMS
remain below 5 ms. This points to the generic efficacy of CC-TMS in terms of scalability
and indicates to its applicability to problem scenarios with PTGs consisting of a large
number of nodes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 6 8

R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

#Processors

Laplace: ϕ = 5
Laplace: ϕ = 6
Laplace: ϕ = 9
Stencil: λ = 4
Stencil: λ = 6
Stencil: λ = 8

(a) Varying processors; b = 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4

R
u

n
n

in
g

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

#Buses

Laplace: ϕ = 5
Laplace: ϕ = 6
Laplace: ϕ = 9
Stencil: λ = 4
Stencil: λ = 6
Stencil: λ = 8

(b) Varying buses; p = 4

Figure 6.12: Scalability of CC-TMS (running time in ms)

6.7 Case Study: Traction Controller

To exhibit the practical applicability of the presented strategies to actual designs, we
discuss a case study using a Traction Controller (TC) application present in automotive
systems. TC helps in actively stabilizing an automobile so that it can continue in its
stipulated path even when road conditions are slippery [5]. Figure 6.13a depicts the
block diagram of TC as adopted from [5]. The corresponding PTG representation which
consists of 12 task nodes {T0, T1, . . . , T11} and 17 message nodes {M1,M2, . . . ,M17}, is

155

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

P1 200 200 200 200 150 300 175 400 150 200
P2 185 185 185 185 160 320 150 375 175 220

Table 6.9: Execution times of task nodes (in µs)

shown in Figure 6.13b. Here, in order to adhere to the assumptions stated in Section 6.1,
we have added, (i) two dummy task nodes T0 and T11 as source and sink nodes, respec-
tively, (ii) eight dummy message nodes M10 to M17. For the purpose of this case study,
the PTG is assumed to be executed on a two processor (P = {P1, P2}) heterogeneous
distributed platform interconnected via two heterogeneous buses (B = {B1, B2}). Ta-
ble 6.9 lists the task execution times associated with the processors in P . Table 6.10 lists
the communication times of the message nodes on the different buses in B. The exe-
cution/communication times of the dummy task/message nodes on all processors/buses
are set to 0.

Left-rear
wheel speed

Left-front
wheel speed

Right-rear
wheel speed

Right-front
wheel speed

Hand-wheel
position Yaw rate Lateral

acceleration

Desired braking
force

Actuate
brakes

Actuate
throttle

D
=

20
00

(a)

T0

M10 M11 M12 M13 M14 M15

T1 T2 T3 T4

M1 M2 M3 M4

T6T5 T7

M6M5 M7

T8

M8 M9

T9 T10

M16 M17

T11

(b)

Figure 6.13: Traction Control application’s (a) Block Diagram [5], (b) PTG representation

We have employed ILP-NC and CC-TMS to generate schedules for the PTG of TC
with the objective of minimizing makespan. We summarize below the important obser-

156

6.7 Case Study: Traction Controller

M1 M2 M3 M4 M5 M6 M7 M8 M9

B1 475 475 475 475 1100 275 1025 650 650
B2 400 400 400 400 1200 280 550 630 630

Table 6.10: Transmission times of message nodes (in µs)

T1 T10T2T4 T5 T6 T8 T9P1

T3 T7P2

M3B1

M7B2
0 200 400 600 800 1000 1200 1400 1600 1800

1800

time
(µs)

Figure 6.14: The schedule for the PTG (Figure 6.13b) using ILP-NC

T1 T4T5 T6 T8 T9T10P1

T2T3 T7P2

M2B1

M3 M7B2
0 200 400 600 800 1000 1200 1400 1600 1800

1895

time
(µs)

Figure 6.15: The schedule for the PTG (Figure 6.13b) using CC-TMS

vations associated with the obtained schedules for ILP-NC (Figure 6.14) and CC-TMS
(Figure 6.15):

• Constraint Satisfaction for ILP: From the ILP-NC schedule (Figure 6.14), we can
observe that, (i) on any given resource (processor/bus), no two tasks/messages
commence execution/transmission at the same time, (ii) resource constraints have
always been satisfied, (iii) constraints related to inter-node dependencies have been
adhered to. For example, task T1 commences execution on processor P1 at time

157

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

350 µs. While being processed on P1, no task barring T1 executes on P1 (thus,
satisfying resource usage constraint). As both tasks T2 and T6 are allocated on to
the same processor P1, no communication overhead is incurred for transmission of
the output of T2 to T6.

• Heterogeneity Modeling: Each PTG node consumes an appropriate execution/
transmission time according to the processor/bus allocated to it. As example, in
Figure 6.14, T1 consumes 200 µs as it is scheduled on P1; M3 takes 475 µs as
it is transmitted over B1 (commensurate with their execution and transmission
demands as specified in Tables 6.9 and 6.10).

• Implementation of ILP-NC using the CPLEX optimizer generates 793 constraints
and takes ∼2 secs to produce the solution. The corresponding schedule (in Fig-
ure 6.14) has a makespan of 1800 µs. On the other hand, the schedule computed
using CC-TMS (Figure 6.15) takes 50 µs to generate the solution which has the
makespan of 1895 µs. Similar to the result trends obtained in the experiments
section, we observe that the optimal solution delivers lower makespans (CC-TMS
makesapn− ILP makespan = 95). However, the run-time overhead associated with
the ILP is about ∼105 times higher than CC-TMS. Thus, while the ILP produces
very efficient solutions which may be critical for resource-constrained embedded
systems, the CC-TMS algorithm is much more scalable and faster producing rea-
sonably good solutions which may be important when quick design iterations are
required.

6.8 Summary

This chapter addressed the problem of scheduling PTGs to be executed on a heteroge-
neous distributed system interconnected via shared buses. It proposes two ILP based
solution ILP-ETR and ILP-NC to compute optimal schedules. Though, ILP-NC shows
an appreciable improvement in terms of scalability compared to ILP-ETR, its run time
is high and sensitive to the number of nodes and the number of resources. Appreciating

158

6.8 Summary

the necessity of a fast but efficient algorithm for the problem at hand, especially for sit-
uations when quick solutions are needed at design-time or run-time, we have proposed a
heuristic namely, CC-TMS. Extensive experiments have been carried-out using bench-
mark PTGs for performance evaluation of the proposed strategies. The obtained results
show that the heuristic scheme (CC-TMS) is ∼105 times faster than the ILP based op-
timal strategy ILP-NC. Finally, we presented a case study using a real-world Traction
Controller (TC) application. The next chapter endeavours towards the design of het-
erogeneous processor-shared bus co-scheduling strategies for a given set of independent
periodic applications, each of which is modelled as a PTG.

159

6. PTG SCHEDULING ON SHARED-BUS BASED HETEROGENEOUS
PLATFORMS

160

Chapter 7
Scheduling Multiple Independent PTG
Applications on Shared-Bus Platform

Works done in Chapters 4, 5 and 6 deal with the co-scheduling of a single task graph ap-
plication. In this chapter, we endeavour towards the design of heterogeneous processor-
shared bus co-scheduling strategies for a given set of independent periodic applications,
each of which is modelled as a PTG. In particular, we have developed an ILP based
optimal and heuristic strategy for the mentioned system model, whose objective is to
minimize system level dynamic energy dissipation. To achieve energy savings, the pro-
cessors in the system are assumed to be DVFS enabled and thus, the operating frequen-
cies of these processors can be dynamically reconfigured to a discrete set of alternative
voltage/frequency-levels at run-time. However, the ILP based optimal scheme called
ILP-ES is associated with very high computational complexity and is not scalable even
for small problem sizes. Therefore, we propose an efficient but low-overhead heuristic
strategy called SAFLA which consumes drastically lower time and space complexities
while generating good and acceptable solutions. Experimental results show that SAFLA
is an effective scheduling scheme and delivers handsome savings in terms of lower energy
consumption in most practical scenarios. We conclude the chapter after presenting a
case study using Electric Power Steering (EPS), Adaptive Cruise Controller (ACC) and
Traction Controller (TC) applications.

161

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

7.1 Models and Terminologies

This section introduces the system model along with associated assumptions, the power
and energy model, the problem statement, and also presents an example system which
illustrates the discussed models.
System Model: A distributed heterogeneous multiprocessor system has been consid-
ered. The system consists of p heterogeneous processors P = {P1, P2, . . . , Pp} connected
through b heterogeneous shared buses B = {B1, B2, . . . , Bb}. Each processor Pr is log-
ically connected to all the buses. The pictorial representation of the platform is shown
in Figure 7.1. The processors are DVFS enabled; that is, a processor Pr can execute at
a discrete set of alternative (voltage/frequency) levels Lr = {1, 2, . . . , |Lr|}, with each
level l ∈ [1, |Lr|] being associated with operating voltage Vrl and frequency frl. Here,
fr1 (Vr1) and fr|Lr| (Vr|Lr|) represents the maximum and minimum operating frequencies
(voltages) of Pr, respectively. Table 7.1 shows the voltage/frequency-levels correspond-
ing to a system of three heterogeneous processors (P1: Intel Pentium M, P2: AMD
Athlon-64, P3: AMD Opteron 2218) [8].

Processor
P1

Processor
P2 · · · Processor

Pp

Bus B1

Bus B2

Bus Bb

· · · · · · · · ·

··
·

Figure 7.1: Platform Model

This work considers a set G of periodic applications {G1, G2, . . . , GN}, where each ap-
plication Gg ∈ G is denoted by a Precedence-constrained Task Graph (PTG) as depicted
in Figure 7.2. PTG Gg is described through a two-tuple Gg = (Vg,Eg) where,

• Vg = {T g1 , T g2 , . . . , T gng ,M g
1 ,M

g
2 , . . . ,M

g
mg} denotes (ng + mg) nodes, where T g =

{T g1 , T
g
2 , . . . , T

g
ng} is a set of ng tasks, and M g = {M g

1 ,M
g
2 , . . . ,M

g
mg} denotes mg

messages capturing inter-task data transmission demands.

162

7.1 Models and Terminologies

Level
Intel Pentium M AMD Athlon-64 AMD Opteron 2218

Voltage Frequency Voltage Frequency Voltage Frequency
1 1.5 2 1.484 1.4 1.3 2.6
2 1.4 1.8 1.463 1.2 1.25 2.4
3 1.3 1.6 1.308 1 1.2 2.2
4 1.2 1.4 1.18 0.8 1.15 2
5 1.1 1.2 0.956 0.6 1.1 1.8
6 1 1 1.05 1

Table 7.1: Sample voltage (volt) / frequency (GHz) pairs [8]

• Eg ⊆ Vg×Vg denotes the set of edges which describe dependency-constraints among
nodes in Vg.

• Each task T gi may potentially execute on any processor and at any voltage/frequency-
level on that processor. The worst-case execution time (WCET) of a task T gi on a
given processor Pr at voltage/frequency-level l is represented as egirl.

• The WCET of T gi on Pr at its minimum (base) voltage/frequency-level is repre-
sented as egir1. Given egir1, execution times of T gi on Pr at any other voltage/frequency-
level (except minimum level) is computed as egirl =

⌈
eg

ir1×fr1
frl

⌉
, where fr1 represents

the maximum execution frequency, while frl denotes the current operating fre-
quency of Pr.

• Each message M g
k ∈ M g may possibly be transmitted through any bus Br ∈ B

with the distinct communication time associated with this transmission being cgkr.

• The processors being heterogeneous, the WCETs of a task on two distinct proces-
sors are completely unrelated. Similarly, the data transmission times of a message
on two distinct buses are completely unrelated.

• The WCETs of a task T gi on Pr is fixed to ∞ for all voltage/frequency-levels, to
model the case in which the execution of T gi is infeasible on Pr. Similarly, the

163

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

communication times of a message M g
k is set to ∞, if the transmission of M g

k is
infeasible on Br.

• Dg is the implicit deadline associated with the periodic application Gg.

Assumptions:

1. Each PTG has one start (source) and one end (sink) node. Both start and end
nodes are tasks.

2. The parents (excluding source nodes) and children (excluding sink nodes) of a task
T gi are message nodes.

3. A message node M g
k has only one parent and one child node, and both are task

nodes.

4. If the parent and child tasks of a message M g
k are assigned on the same processor,

data transmission time of M g
k becomes negligible; i.e., ∀Br ∈ B, cgkr = 0.

T 1
1

M 1
1 M 1

2

T 1
2 T 1

3

M 1
3 M 1

4

T 1
4

(a)

T 2
1

M 2
1

T 2
2

M 2
2

T 2
3

(b)

Figure 7.2: Example of PTGs; (a) PTG G1, Period D1 = 20; (b) PTG G2, Period D2 = 10

Given a set of persistent periodic applications {G1, G2, . . . , GN} with their implicit
deadlines (i.e., periods) {D1, D2, . . . , DN}, the hyperperiod (H) is determined as Least
Common Multiple (LCM) of the application periods, i.e., H = LCM(D1, D2, . . . , DN).

164

7.1 Models and Terminologies

Processor
PTG G1 PTG G2

T 1
1 T 1

2 T 1
3 T 1

4 T 2
1 T 2

2 T 2
3

P1 5 6 5 3 1 2 3
P2 7 4 4 5 2 2 4
P3 8 5 2 6 4 6 3

Table 7.2: Execution times of tasks at processors’ maximum voltage/frequency

Bus
PTG G1 PTG G2

M1
1 M1

2 M1
3 M1

4 M2
1 M2

2

B1 1 1 1 1 1 1
B2 2 2 2 2 2 2

Table 7.3: Communication times of message nodes

The number of iterations/instances of an application PTG Gg within the hyperpe-
riod H is obtained as, Ig = H/Dg. So, Gg has Ig instances within H denoted as:
{Gg1, Gg2, . . . , GgIg}.

A PTG Ggq corresponding to any application instance is described through a two
tuple (Vgq,Egq), where Vgq = {Vgq1 ,V

gq
2 , . . . ,V

gq
ng+mg} is the set of task and message

nodes in Ggq, and Egq ⊆ Vgq × Vgq denotes the set of edges which describe dependency-
constraints among nodes in Vgq. The nodes Vgq1 ,V

gq
2 , . . . ,V

gq
ng represent the ng task nodes

of application Gg, while V
gq
ng+1,V

gq
ng+2, . . . ,V

gq
ng+mg are the mg message nodes of Gg. The

ng task nodes for the qth instance Ggq (of Gg) is denoted by T gq1 , T gq2 , . . . , T gqng . Similarly,
the mg message nodes of Ggq are represented as M gq

1 , M gq
2 , . . . , M gq

mg . Thus, Vgq1 = T gq1 ,
V
gq
2 = T gq2 , . . . , V

gq
ng = T gqng , V

gq
ng+1 = M gq

1 , V
gq
ng+2 = M gq

2 , . . . , V
gq
ng+mg = M gq

mg . The
preceding and succeeding message nodes of T gqi are denoted via the notations pred(T gqi)
and succ(T gqi), respectively. Similarly, we use the notations pred(M gq

k) and succ(M gq
k)

to represent the preceding and succeeding task nodes of M gq
k .

It may be noted that the set of PTGs being persistent, a schedule for all instances
of all PTGs in H will repeat every hyperperiod. It is therefore sufficient to focus on

165

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

the generation of an efficient schedule for one hyperperiod, as is the objective of the
algorithms proposed herein.
Power and Energy Models: Three different categories of power consumption are typ-
ically prominent in CMOS circuits namely, dynamic, static, and short circuit power [61].
Among these, dynamic power is the major source of power dissipation. It is defined as,

P = aCV 2f (7.1)

where f denotes the clock frequency, V represents the supply voltage, C is a constant
which denotes the loading capacitance, and a is a constant indicating activity factor. In
this work, we attempt to minimize dynamic power in line with the approach followed in
other related works [8], [62], [63], [64]. The energy dissipated during the execution of a
task T gi on processor Pr at level l (Vrl, frl) is calculated as,

E(T gi , r, l) = α× V 2
rl × frl ×

⌈
egir1 × fr1

frl

⌉
(7.2)

where Vrl, frl and fr1 are the supply voltage, execution frequency and maximum execu-
tion frequency of the processor Pr on which T gi executes. Here, α = aC. The difference
in the energy consumption between two levels l1 and l2 (l1 < l2) can be computed as
follows:

E ′(T gi , r, l1, l2) = E(T gi , r, l1)− E(T gi , r, l2) (7.3)

Example: Figure 7.2a depicts a sample PTG G1 consisting of 8 nodes, with implicit
deadline D1 = 20 units. Among them, {T 1

1 , T
1
2 , T

1
3 , T

1
4 } are tasks and {M1

1 ,M
1
2 ,M

1
3 ,M

1
4}

are messages. Hence, n1 = m1 = 4. Similarly, Figure 7.2b shows a PTG G2 which con-
sists of 5 nodes, with implicit deadline D2 = 10 units. We consider a sample platform
model with three heterogeneous processors P1, P2, and P3 interconnected via two shared
buses B1 and B2. Here processor P1, P2 and P3 represent Intel Pentium M, AMD Athlon
and AMD Opteron 2218, respectively, and have voltage/frequency at different levels as
shown in Table 7.1. In Table 7.2, we show the WCETs of the task nodes when they
execute at the maximum voltage/frequency (l = 1) on their assigned processors. An
entry e1

1,1,1 = 5 in this table specifies that task T 1
1 takes 5 time units to complete its

166

7.2 Earliest/Latest Start Times for PTG Nodes

execution on processor P1 at l = 1. Similarly, Table 7.3 shows data transmission times
of the message nodes. An entry say c1

1,1 = 1 in this table denotes that message M1
1

takes one time unit for transmission over bus B1. Further, it may be noted that H =
LCM(D1, D2) = 20. Hence, the number of instances of G1 and G2 are I1 = 1 and
I2 = 2, respectively.

Problem Statement: Given a set of periodic applications (PTGs) G = {G1, G2, . . . , GN}
with their end-to-end deadlines (D1, D2, . . . , DN) and a set of p heterogeneous processors
connected through b heterogeneous shared buses, determine for the task and message
nodes of all instances of each PTG in a hyperperiod H, (i) task-to-processor assign-
ments, (ii) processor level (voltages/frequencies) for each such task assignment, (iii)
message-to-bus assignment, (iv) start times for all task and messages, such that the ag-
gregate energy consumption is minimized, while meeting constraints related to resource,
deadline, and precedence.

7.2 Earliest/Latest Start Times for PTG Nodes

The Earliest and Latest start times computation technique is different from earlier chap-
ters because here we need to consider concurrent executions of multiple PTGs.

Let tgqis and tgqil be the earliest and latest start times at which task T gqi of PTG Gg

at its qth iteration may start execution. It may be noted that a task may potentially
be scheduled on any processor and at any available frequency. In addition, message
node M gq

k becomes invalid when its predecessor and successor task nodes T gqi and T gqj

are scheduled on the same processor. Hence, in order to get all possible valid ranges of
start times of task nodes, we, (i) ignore message nodes (M gq

k) in the PTG and assume
directed edges between the predecessor (T gqi) and successor (T gqj) task nodes of each
message node, (ii) consider the least execution times (egir1) for each task T gqi in the PTG
Gg. The tgqis (As Soon As Possible (ASAP) time) and tgqil (As Late As Possible (ALAP)
time) values for task nodes are computed as follows.

167

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

ASAP/ALAP computation procedure for task nodes:
The ASAP of task nodes is computed as follows:
∀g ∈ [1, N], ∀q ∈ [1, Ig]

1. ∀T gqi | indeg(T gqi) = 0, set ASAP time of T gqi as,

tgqis = 1 +Dg ∗ (q − 1)

2. ASAP times of the remaining task nodes (except T gqi , where indeg(T gqi) = 0) are
recursively determined (downward) as follows:

tgqis = max
T gq

j ∈predT (T gq
i)

(tgqjs + min
r∈[1,p]

egjr1)

where, predT (T gqi) is the set of predecessors of task node T gqi .

The ALAP of task nodes is computed as follows:
∀g ∈ [1, N], ∀q ∈ [1, Ig]

1. ∀T gqi | outdeg(T gqi) = 0, set ALAP time of T gqi as,

tgqil = (Dg ∗ q)− min
r∈[1,p]

egir1 + 1

2. ALAP times of remaining task nodes (except T gqi , where outdeg(T gqi) = 0) are
recursively determined (upward) as follows:

tgqil = min
T gq

j ∈succ(T
gq
i)

(tgqjl − min
r∈[1,p]

egir1)

where, succ(T gqi) is the set of successors of task node T gqi .

ASAP/ALAP computation procedure for message nodes:

1. ASAP times of message node M gq
k of PTGs at each iteration is defined as:

∀g ∈ [1, N], ∀q ∈ [1, Ig]
tgqks = tgqis + min

r∈[1,p]
egir1

where, T gqi is the predecessor task node of M gq
k .

168

7.2 Earliest/Latest Start Times for PTG Nodes

2. ALAP times of node M gq
k is defined as follows:

∀g ∈ [1, N], ∀q ∈ [1, Ig]
tgqkl = tgqjs − min

r∈[1,b]
cgkr

where, T gqj is the successor task node of M gq
k .

PTG G1 PTG G2

Iteration-1 Iteration-1 Iteration-2
T 1,1

1 T 1,1
2 T 1,1

3 T 1,1
4 T 2,1

1 T 2,1
2 T 2,1

3 T 2,2
1 T 2,2

2 T 2,2
3

ASAP 1 6 6 10 1 2 4 11 12 14
ALAP 9 14 16 18 5 6 8 15 16 18

Table 7.4: ASAP and ALAP times of task nodes in PTGs G1 and G2 (Figure 7.2, Table 7.2
& Table 7.3)

PTG G1 PTG G2

Iteration-1 Iteration-1 Iteration-2
M1,1

1 M1,1
2 M1,1

3 M1,1
4 M2,1

1 M2,1
2 M2,2

1 M2,2
2

ASAP 6 6 10 10 2 4 12 14
ALAP 13 15 17 17 5 7 15 17

Table 7.5: ASAP and ALAP times of message nodes in PTGs G1 and G2 (shown in Fig-
ure 7.2, Table 7.2 & Table 7.3)

Example: Let us consider PTGs G1 and G2 (in Figure 7.2). Table 7.4 shows the ASAP
and ALAP times corresponding to the task nodes in G1 and G2 for all instances of their
executions within the hyperperiod. For example, ASAP and ALAP times of task node
T 1,1

1 in PTG G1 (for the first instance) are 1, and 9, respectively. Similarly, Table 7.5
shows the ASAP and ALAP times corresponding to each message node in G1 and G2.
�

Next, we present an ILP based strategy namely, ILP-ES. The design philosophy
of ILP-ES is similar to the formulations of ILP-SATC (Chapter 4, Section 4.3) and
ILP-ETR (Chapter 6, Section 6.3), respectively. However, the objective functions and

169

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

many of the constraints in the ILP presented in this chapter require certain modifications
with respect to those in Chapters 4 and 6, as the current work assumes a distributed
platform connected via shared buses executing multiple PTGs. In order to improve
continuity of discussion, completeness and better readability, we have discussed in details
all the constraints and objective functions involved in ILP-ES.

7.3 ILP Formulation: ILP-ES

In this section, we present an Integer Linear Programming (ILP) based formulation
namely, ILP for Energy-aware Scheduling (ILP-ES) to solve the scheduling problem
considered in this work. First, let us consider a set of binary decision variables Xgq

irlt and
Y gq
irt . Here, Xgq

irlt = 1, if task T gqi in the qth instance of a PTG Gg starts its execution
at time step t on processor Pr at level l; Xgq

irlt = 0, otherwise. The variable Y gq
krt = 1,

if message M gq
k in the qth instance of a PTG Gg starts its transmission at time step t

on bus Br; Y gq
krt = 0, otherwise. We now present the required constraints on the binary

decision variables X and Y to model the scheduling problem.

7.3.1 Unique Start Time Constraints

The start time of each task should be unique. That is, each task node T gqi in the qth

instance of a PTG Gg must start its execution at a unique time step t on a distinct
processor Pr at a certain level l.
∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀i ∈ [1, ng]

p∑
r=1

|Lr|∑
l=1

tgq
il∑

t=tgq
is

Xgq
irlt = 1 (7.4)

The start time of each message should be unique. That is, each message node M gq
k

in the qth instance of a PTG Gg must start its transmission at time step t on a bus Br.
∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀k ∈ [1,mg]

b∑
r=1

tgq
kl∑

t=tgq
ks

Y gq
krt = 1− Zk (7.5)

170

7.3 ILP Formulation: ILP-ES

where,

Zk =
p∑
r=1

|Lr|∑
l1=1

tgq
il∑

t1=tgq
is

|Lr|∑
l2=1

tgq
jl∑

t2=tgq
js

Xgq
irl1t1 ∗X

gq
jrl2t2

It may be noted that in the above equation, Zk = 1 when both predecessor (T gqi) and
successor (T gqj) task nodes of message node M gq

k are assigned to the same processor Pr,
forcing the LHS of Equation 7.5 to become 0. Otherwise, Zk = 0. As Xgq

irl1t1 and Xgq
irl2t2

are binary decision variables, we linearize their multiplication by introducing another
binary decision variable U gq

krl1t1l2t2 as shown below:

Zk =
p∑
r=1

|Lr|∑
l1=1

tgq
il∑

t1=tgq
is

|Lr|∑
l2=1

tgq
jl∑

t2=tgq
js

U gq
krl1t1l2t2 (7.6)

Now, the non-linear variables U gq
krl1t1l2t2 can be linearized using the following four

inequalities.
Xgq
irl1t1 > U gq

krl1t1l2t2 (7.7)

Xgq
jrl2t2 > U gq

krl1t1l2t2 (7.8)

U gq
krl1t1l2t2 > Xgq

irl1t1 +Xgq
jrl2t2 − 1 (7.9)

U gq
krl1t1l2t2 ∈ {0, 1} (7.10)

7.3.2 Resource Constraints

Resource bounds for processors must be satisfied at each time step. Any processor Pr
can execute at most one task at a given time step. In this regard, it may be noted that a
task node T gqi can only be executing on processor Pr at time t, if it has started at most
t− egir1 + 1 time steps earlier.
∀t ∈ [1,H], ∀r ∈ [1, p]

N∑
g=1

Ig∑
q=1

ng∑
i=1

|Lr|∑
l=1

t∑
t′=ψ

Xgq
irlt′ 6 1 (7.11)

171

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

where, ψ = t− egir1 + 1.
Similarly, a message node M gq

k can only be transmitting through bus Br at time t, if
it has started at most t− cgkr + 1 time steps earlier.
∀t ∈ [1,H], ∀r ∈ [1, b]

N∑
g=1

Ig∑
q=1

mg∑
k=1

t∑
t′=ψ

Y gq
krt′ 6 1 (7.12)

where, ψ = t− cgkr + 1.

7.3.3 Dependency Constraints

The dependencies between nodes must be satisfied. Without loss of generality, let us
consider the following relationship from the qth iteration of a PTG Gg: T gqi −→ M gq

k −→
T gqj . Constraints 7.13 and 7.14 assert that the preceding task node T gqi of message node
M gq

k completes its execution (i) before the start of the succeeding task node T gqj of M gq
k

(in case, both T gqi and T gqj are assigned to the same processor) and, (ii) before the start
of M gq

k (in case, both T gqi and T gqj are assigned to different processors).
∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀M gq

k | T
gq
i = pred(M gq

k) and T gqj = succ(M gq
k),

p∑
r=1

|Lr|∑
l=1

tgq
il∑

t=tgq
is

(t+ egirl) ∗X
gq
irlt 6

p∑
r=1

|Lr|∑
l=1

tgq
jl∑

t=tgq
js

t ∗Xgq
jrlt (7.13)

p∑
r=1

|Lr|∑
l=1

tgq
il∑

t=tgq
is

(t+ egirl) ∗X
gq
irlt 6

b∑
r=1

tgq
kl∑

t=tgq
ks

t ∗ Y gq
krt + C ∗ Zk (7.14)

where, C is a large constant. It may be observed that by setting C to a sufficiently large
value, the constraint in Equation 7.14 is trivially satisfied when both T gqi and T gqj are
assigned to the same processor (Zk = 1). Suppose the message node M gq

k is scheduled on
a bus (i.e., Zk = 0). Then, task node T gqj (= succ(M gq

k)) should commence its execution
only after the completion of M gq

k . This constraint is represented as follows:
∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀M gq

k | T
gq
j = succ(M gq

k),

b∑
r=1

tgq
kl∑

t=tgq
ks

(t+ cgkr) ∗ Y
gq
krt 6

p∑
r=1

|Lr|∑
l=1

tgq
jl∑

t=tgq
js

t ∗Xgq
jrlt (7.15)

172

7.3 ILP Formulation: ILP-ES

It is noteworthy that when Zk = 1, the constraint imposed by Equation 7.5 enforces∑b
r=1

∑tgq
kl

t=tgq
ks
Y gq
krt to be 0. Hence, the expression ∑b

r=1
∑tgq

kl

t=tgq
ks
Y gq
krt in the LHS of Equa-

tion 7.15 also reduces to 0. So, Constraint 7.15 is implicitly satisfied, when Zk is 1.

7.3.4 Deadline Constraint

All tasks in an instance q of a PTG Gg have to complete their executions within the
deadline of instance q. This can be satisfied by restricting the finish times of all sink
nodes of Gg in the instance q to be at most the deadline for that instance. The constraint
can be written as:
∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀T gqi | outdeg(T gqi) = 0

p∑
r=1

|Lr|∑
l=1

tgq
il∑

t=tgq
is

(t+ egirl) ∗X
gq
irlt 6 q ∗Dg (7.16)

7.3.5 Objective Function

Our objective is to minimize the overall energy consumption of the system while satis-
fying all the schedulability constraints. The objective function can be written as:

Minimize
N∑
g=1

Ig∑
q=1

ng∑
i=1

p∑
r=1

|Lr|∑
l=1

tgq
il∑

t=tgq
is

Xgq
irlt × E(T gi , r, l) (7.17)

subject to constraints presented in Equations 7.4 - 7.16.

Complexity Analysis: Table 7.6 summarizes the complexity associated with each
constraint of the presented formulation in terms of the order of the number of constraints
and the number of variables per constraint. For example, the deadline constraint enforces
that all sink task nodes across all instances of all PTGs must have to complete their
executions within the deadlines of the respective instances (row-6 of Table 7.6). Hence,
this constraint must be separately present for all ng sink task nodes across Ig instances
of all N PTGs and so, the number of constraints is O(∑N

g=1 I
g×ng) (as may be seen from

#constraints column of Table 7.6). Further for each such task, the number of variables
which must be considered is O(p×|Lr|×Dg), as it can be observed from Equation 7.16.

173

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

Table 7.6 presents similar complexity analysis results for all other constraints. The total
complexity of the proposed ILP formulation (in terms of the number of constraints) is
O((p× (|Lr| ×Dg)2) + (∑N

g=1 I
g × ng)).

Constraint
Type

Equation
No. #Constraints #Variables Per

Constraint

Unique Start
Time

7.4 O(∑N
g=1 I

g × ng) O(p× |Lr| ×Dg)
7.5 O(∑N

g=1 I
g ×mg) O(max{(b×Dg), (p× (|Lr| ×Dg)2)})

Linearization

7.7 O(p× (|Lr| ×Dg)2) O(1)
7.8 O(p× (|Lr| ×Dg)2) O(1)
7.9 O(p× (|Lr| ×Dg)2) O(1)
7.10 O(p× (|Lr| ×Dg)2) O(1)

Resource
Constraints

7.11 O(p×H) O(|Lr| ×
∑N
g=1 I

g × ng ×Dg)
7.12 O(b×H) O(∑N

g=1 I
g ×mg ×Dg)

Dependency
Constraints

7.13 O(∑N
g=1 I

g ×mg) O(p× |Lr| ×Dg)
7.14 O(∑N

g=1 I
g ×mg) O(max{(p× |Lr| ×Dg), (b×Dg)})

7.15 O(∑N
g=1 I

g ×mg) O(max{(p× |Lr| ×Dg), (b×Dg)})
Deadline 7.16 O(∑N

g=1 I
g × ng) O(p× |Lr| ×Dg)

Table 7.6: Complexity of ILP

Due to high computational overheads, we have not implemented our proposed ILP
based formulation ILP-ES to generate an optimal solution. With the insight gained
through the formal ILP based presentation of the problem, we have designed an effective
low-overhead heuristic scheme which can deliver satisfactory solutions within acceptable
time bounds. The details of this heuristic scheme are discussed in the next section.

7.4 Proposed Scheme

For scheduling a single PTG on heterogeneous platforms, list based heuristic schemes
have traditionally been proposed in the literature. A majority of these list schedul-
ing algorithms assume a fully interconnected system of processing elements so that the
scheduling technique under design does not have to deal with communication contention,

174

7.4 Proposed Scheme

in addition to its responsibility of allocating tasks on processors [1, 6, 11, 65]. The pri-
mary scheduling objective in most of these algorithms have been to obtain minimum
schedule length while guaranteeing precedence and resource related constraints. Unlike
existing works which consider single PTGs, this work endeavors to tackle the scheduling
problem involving multiple independent real-time periodic PTGs running on a shared
bus based heterogeneous distributed system. Hence, the devised solution must generate
a co-schedule which simultaneously resolve the contentions on both processors as well
as shared bus resources.

For the problem considered in this work, we devise a heuristic algorithm namely, Slack
Aware Frequency Level Allocator (SAFLA). First, SAFLA invokes the Task and Message
Co-scheduler (TMC) which actually extends CC-TMS (Chapter 6, Algorithm 4) to com-
pute an initial schedule with all processors operating at their highest voltages/frequencies
(i.e., l = 1). For this purpose, TMC invokes the Task Priority Generator (TPG) func-
tion to construct a priority list of tasks named TaskPriorityList. The priority of a node
is an estimate of the amount of workload that remains to be scheduled before the com-
pletion of the sink node. This list is used to govern the sequence in which tasks are
selected for processor assignment, in TMC. Internally, TMC selects the next task from
TaskPriorityList and its predecessor messages. Then, TMC allocates the task node to an
appropriate processor and message nodes on one or more buses, so that completion time
of the selected task is minimized. Finally, SAFLA takes the initial schedule produced
by TMC as input and progressively lowers the processor operating frequencies in a level-
by-level fashion such that aggregate energy corresponding to the schedule is minimized.
In the next few subsections, we present the details of each stage within SAFLA.

7.4.1 Task Priority Generator (TPG)

The first stage determines a rank for each node in any instance of each PTG in the system
using a priority generation mechanism. The priority of a node at the qth instance of any
PTG Gg(∈ G) is recursively obtained by moving upwards, beginning from the sink task
nodes (i.e., nodes with outdeg(T gqi) = 0). The priority, PG(T gqi) of a sink node T gqi ∈ Vgq

is computed as,

175

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀T gqi | outdeg(T gqi) = 0

PG(T gqi) = egi + (Ig − q)×Dg (7.18)

where, egi = 1
p

∑p
r=1 e

g
ir1, is the average execution time of T gqi over all processors Pr ∈ P

(at the highest frequency; l = 1). The second term in the RHS, (Ig − q)×Dg, ensures
that the priority of sink node T gqi of the qth instance of Gg within the hyperperiod, will
be higher than the priority of T g(q+1)

i in the following instance (q + 1) by the value of
the relative deadline Dg.

The priorities of the remaining tasks and messages are defined as,
∀g ∈ [1, N], ∀q ∈ [1, Ig]

PG(T gqi) = egi + max
Mgq

k
∈succ(T gq

i)
PG(M gq

k) (7.19)

PG(M gq
k) = cgk + PG(T gqj) (7.20)

where, succ(T gqi) is the set of successor message nodes of the task node T gqi . Among
these message nodes, the highest priority message node is employed to compute the
priority of its predecessor T gqi . This process ensures that the priority of T gqi will always
be higher than the priorities of all its successor nodes. In Equation 7.20, cgk(= 1

b

∑b
r=1 c

g
kr)

is the average communication time of the message node M gq
k over all buses and PG(T gqj)

denotes the priority of T gqj , the task which immediately succeeds M gq
k .

Pseudo-code of Task Priority Generator (TPG) is presented in Algorithm 5. Ini-
tially, TPG computes the hyperperiod H = LCM(D1, D2, . . . , DN), for the given set of
independent PTGs G = {G1, G2, . . . , GN} (line 1). Next, it finds out the total number
of instances Ig of each PTG Gg ∈ G, over H. Then, the priorities of all nodes in all the
PTG instances in the system are calculated based on Equations 7.18, 7.19, and 7.20.
Finally, TPG generates the list TaskPriorityList consisting of only task nodes, which
are organized in non-increasing order of their priorities (line 8).

Complexity Analysis of TPG: The nested for loops in line nos. 4 to 7 of TPG
dominate its time complexity. Specifically, it takes O(∑N

g=1 I
g × (ng + mg)). It may be

176

7.4 Proposed Scheme

ALGORITHM 5: TPG
Input: PTGs G = {G1, G2, . . . , GN}
Output: TaskPriorityList

1 Compute the hyperperiod H = LCM(D1, D2, . . . , DN)
2 for each PTG Gg ∈ G do
3 Compute the number of instances: Ig = H

Dg

4 for each PTG Gg ∈ G do
5 for each instance q (∈ {1, 2, . . . , Ig}) of Gg do
6 for each node V

gq
i ∈ Vgq moving bottom-up do

7 Compute priority (PG) for V
gq
i using Equations 7.18, 7.19, and 7.20

8 Create a TaskPriorityList consisting of only the task nodes organized in
non-increasing order of their priorities

noted that the number of elements in TaskPriorityList is ∑N
g=1 I

g × ng. The complexity
involved in the sorting of TaskPriorityList is O((∑N

g=1 I
g × ng) × log(∑N

g=1 I
g × ng)).

Hence, the total complexity of TPG is, O(∑N
g=1 I

g × (ng + mg)) + O((∑N
g=1 I

g × ng) ×
log(∑N

g=1 I
g × ng)) = O((∑N

g=1 I
g × ng)× log(∑N

g=1 I
g × ng)).

7.4.2 Task and Message Co-scheduler (TMC)

The objective of TMC is to compute an initial task and message schedule with all
processors operating at their highest frequencies, while satisfying real-time and resource
related constraints. For this purpose, TMC sequentially selects tasks from the head of
TaskPriorityList and attempts to assign them along with their predecessor messages
on appropriate processors and buses, so that the finish times of the selected tasks may
be minimized. Here, TMC makes use of the notion of Earliest Start Time (EST) and
Earliest Finish Time (EFT). EST (T gqi , Pr) is the earliest start time of a task node T gqi
in the qth instance of a PTG Gg on processor Pr ∈ P . Similarly, EST (M gq

k , Br) is the
earliest start time of a message node M gq

k in the qth instance of a PTG Gg on bus Br ∈ B.
The EST values are computed recursively for each node beginning from the source node
in the qth instance of a PTG Gg. EST values of source nodes (which are task nodes) are
computed as:

177

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀T gqi | indeg(T gqi) = 0

EST (T gqi , Pr) = max{avail[Pr], (q − 1)×Dg} (7.21)

here, avail[Pr] denotes the earliest time at which task execution can be commenced on
processor Pr. The term (q − 1)×Dg appropriately includes the offset corresponding to
qth instance of PTG Gg. The ESTs of other task nodes in the qth instance of Gg are
obtained as follows:

EST (T gqj , Pr) = max{avail[Pr], max
Mk∈pred(T gq

j)
AFT (M gq

k)} (7.22)

where, AFT (M gq
k) represents the actual completion time of the predecessor message

M gq
k . EST values associated with the message nodes are calculated as,

EST (M gq
k , Br) = max{avail[Br], AFT (T gqi)} (7.23)

where, avail[Br] denotes the earliest instant at which message transmission can be com-
menced on bus Br and AFT (T gqi) denotes the actual completion time of the predecessor
T gqi of M gq

k .
EFT values of all tasks and messages can be calculated as,

EFT (T gqi , Pr) = EST (T gqi , Pr) + egir1 (7.24)

EFT (M gq
k , Br) = EST (M gq

k , Br) + cgkr (7.25)

When both the preceding and succeeding tasks T gqi and T gqj of message node M gq
k are

scheduled on the same processor, then the message node M gq
k becomes immaterial as

the message is not actually transmitted over a bus. That is, avail[Br] = cgkr = 0 and
EST (M gq

k , Br) = EFT (M gq
k , Br) = AFT (T gqi).

The proposed algorithm, TMC is presented in Algorithm 6. Initially, the TMC
algorithm invokes TPG(G) to generate TaskPriorityList, a sorted (non-increasing order
of priorities) list of all task nodes present across all instances (in hyperperiod H) of all
PTGs in G (line 1). Then, the first node in TaskPriorityList is chosen and scheduled

178

7.4 Proposed Scheme

ALGORITHM 6: TMC
Input: PTGs G, Processors P , Buses B
Output: Task and message schedule (start times of all nodes along with

assignment of tasks/messages to processors/buses) in each instance of a
Gg

1 TaskPriorityList = Invoke TPG(G)
2 Set avail[Pr] = avail[Br] = 0, for all processors Pr ∈ P and buses Br ∈ B
3 while TaskPriorityList 6= ∅ do
4 Select the first entry T gqj , from TaskPriorityList
5 Let MsgPriorityList be the list consisting of all predecessor message

nodes of task T gqj organized in non-increasing order of priorities
(computed using PG(M gq

k))
6 for all processors Pr ∈ P do
7 Assume that T gqj is assigned on Pr
8 For each bus, set tempAvail[Br] = avail[Br]
9 for each M gq

k ∈MsgPriorityList do
10 for each bus Br′ do
11 Compute EFT (M gq

k , Br′)
12 Assume that M gq

k is assigned on Br′ that minimizes its EFT and
update tempAvail[Br′] = EFT (M gq

k , Br′)
13 Compute EFT (T gqj , Pr)
14 Assign T gqj to Pr that minimizes its EFT and update avail[Pr] =

EFT (T gqj , Pr)
15 Given T gqj to Pr, assign all its predecessor messages on buses such that

their EFT’s are minimized and update avail[Br] accordingly
16 Remove T gqj from TaskPriorityList

with its predecessor message nodes. These operations are repeated until the task priority
list becomes empty (line 3 to 16).

The steps involved in the scheduling of a selected task node T gqj may be elaborated as
follows: First, the Task and Message Co-scheduler (Algorithm 6) calculates the priority
list MsgPriorityList consisting of all predecessor messages of T gqj sorted in non-increasing
order of their priorities (line 5). T gqj is then tentatively allocated on Pr ∈ P (line 7).
Given the assignment of T gqj on Pr, its predecessor message nodes are selected from
the priority list MsgPriorityList and tentatively assigned to the buses where their EFT
values are minimized (lines 9 to 12). Subsequent to the tentative assignment of message
nodes on buses, EFT (T gqj , Pr) is computed. Similarly, EFT of T gqj on each processor

179

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

Pr ∈ P is computed (lines 6 to 13). T gqj is finally assigned to that processor on which
its EFT becomes minimum. Given the assignment of T gqj on a particular process Pr, its
predecessor message nodes are assigned to buses such that their EFT’s become minimum
(line 15).

7.4.3 Complexity Analysis of TMC

The computation of TaskPriorityList takes O((∑N
g=1 I

g × ng)× log(∑N
g=1 I

g × ng)) (line
no. 1). In order to initialize avail[Pr] and avail[Br], O(p + b) time is consumed (line
no. 2). The overhead incurred by the while loop (line nos. 3 to 16) is dominated by the
complexity associated with line no. 11 inside the inner-most for loop. By multiplying the
complexity of EFT () with the number of times line no. 10 is invoked, we can determine
the complexity of the while loop. From Equations 7.25 and 7.23, it may be inferred that
EFT (M gq

k , Br′) incurs O(1) overhead. It may also be noted that O(p×(∑N
g=1 I

g×mg)×b)
represents an upper bound on the number of times line no. 11 is executed. Though,
the while loop at line no. 3 iterates for O(∑N

g=1 I
g × ng) times, the for loop at line

no. 9 is invoked at most O(∑N
g=1 I

g × mg) times (as each message has only one child
task). Given that p and b represent the total number of times the for loops in line
nos. 6 and 10 are invoked, the complexity of the TMC algorithm can be written as
O(max{((∑N

g=1 I
g × ng)× log(∑N

g=1 I
g × ng)), (p× (∑N

g=1 I
g ×mg)× b)}).

T 2,1
1 : TMC chooses task T 2,1

1 from TaskPriorityList. The message priority list of T 2,1
1

is empty, because it does not have any predecessor.

P1 : EST (T 2,1
1 , P1) = 0, EFT (T 2,1

1 , P1) = 0 + 1 = 1

P2 : EST (T 2,1
1 , P2) = 0, EFT (T 2,1

1 , P2) = 0 + 2 = 2

P3 : EST (T 2,1
1 , P3) = 0, EFT (T 2,1

1 , P3) = 0 + 4 = 4.

Since EFT (T 2,1
1 , P1) < EFT (T 2,1

1 , P2) < EFT (T 2,1
1 , P3), T 2,1

1 is assigned to pro-
cessor P1 with 0 as its start time. The value of avail[P1] is updated to 1. T 2,1

1 is
then removed from TaskPriorityList.

180

7.4 Proposed Scheme

T 1,1
1 : Then, T 1,1

1 is chosen from TaskPriorityList. Similar to T 2,1
1 , the message priority

list of T 1,1
1 is also empty.

P1 : EST (T 1,1
1 , P1) = 1, EFT (T 1,1

1 , P1) = 1 + 5 = 6

P2 : EST (T 1,1
1 , P2) = 0, EFT (T 1,1

1 , P2) = 0 + 7 = 7

P3 : EST (T 1,1
1 , P3) = 0, EFT (T 1,1

1 , P3) = 0 + 8 = 8.

EFT (T 1,1
1 , P1) < EFT (T 1,1

1 , P2) < EFT (T 1,1
1 , P3). So, T 1,1

1 is assigned to processor
P1 with start time 1 and avail[P1] = 6. T 1,1

1 is removed from the list.

T 2,1
2 : Next, T 2,1

2 is selected and its message priority list is {M2,1
1 }.

P1 : If T 2,1
2 is assigned on processor P1, thenM2,1

1 becomes invalid. EST (M2,1
1 , B1) =

EST (M2,1
1 , B2) = 6; EFT (M2,1

1 , B1) = EFT (M2,1
1 , B2) = 6; EST (T 2,1

2 , P1) =
6, EFT (T 2,1

2 , P1) = 6 + 2 = 8.

P2 : If T 2,1
2 is assigned on processor P2 then tempAvail[B1] = tempAvail[B2] =

0; EST (M2,1
1 , B1) = EST (M2,1

1 , B2) = 1; EFT (M2,1
1 , B1) = 1 + 1 = 2,

EFT (M2,1
1 , B2) = 1 + 2 = 3; tempAvail[B1] = 2; EST (T 2,1

2 , P2) = 2,
EFT (T 2,1

2 , P1) = 2 + 2 = 4.

P3 : If T 2,1
2 is assigned on processor P3 then tempAvail[B1] = tempAvail[B2] =

0; EST (M2,1
1 , B1) = EST (M2,1

1 , B2) = 1; EFT (M2,1
1 , B1) = 1 + 1 = 2,

EFT (M2,1
1 , B2) = 1 + 2 = 3; tempAvail[B1] = 2; EST (T 2,1

2 , P3) = 2,
EFT (T 2,1

2 , P3) = 2 + 6 = 8.

Since EFT (T 2,1
2 , P2) < EFT (T 2,1

2 , P1) < EFT (T 2,1
2 , P3), T 2,1

2 is assigned to pro-
cessor P2 and the message M2,1

1 is assigned to bus B1. Availability of processor P2

and bus B1 are updated to avail[P2] = 4, avail[B1] = 2.

The schedule is constructed in a similar manner for the remaining tasks/message
nodes. The final schedule is depicted in Figure 7.3.

181

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

T 1,1
1T 2,1

1 T 2,2
1 T 2,2

2 T 2,2
3P1

T 1,1
2 T 1,1

4T 2,1
2P2

T 1,1
3T 2,1

3P3

M 1,1
1 M 1,1

4M 2,1
1 M 2,1

2B1

M 1,1
2B2

0 2 4 6 8 10 12 14 16 18 20

Figure 7.3: Example (TMC): Gantt chart representation of the schedule

7.4.4 Slack Aware Frequency Level Allocator (SAFLA)

Given the ordered processor and bus assignments as prescribed by TMC, the SAFLA
algorithm attempts to assign appropriate voltage/frequency-levels to the tasks (during
execution on their assigned processors) such that aggregate energy dissipated by the
schedule is minimized. SAFLA is a heuristic approach which is able to deliver satisfac-
tory solutions while incurring moderate polynomial time complexity. Initially, the algo-
rithm starts by invoking TMC which returns task-to-processor mappings, message-to-bus
mappings, and also the start times of the tasks and messages, assuming all task nodes to
be executing with the processors operating at their maximum frequencies (l = 1). It may
be noted that the available slacks in terms of the unused time slots within the schedule of
each processor can be utilized for energy savings. SAFLA conducts such energy savings
with a poised approach where at any time the level of an appropriate task is enhanced
by one. This task level enhancement, which causes reduction in a processor’s operat-
ing frequency with consequent increase in execution time, must be carried-out while
taking care that this doesn’t lead to overlapped executions of multiple tasks/messages
assigned on the same resource. In order to ensure this, SAFLA adds a zero weighted
edge (Vi 0−→ Vj) between two mutually independent nodes Vi and Vj, if both nodes are
mapped to the same resource r and Vj immediately starts its execution/transmission
after Vi.

Next, SAFLA calculates the slack times for each task node T gqi as:

182

7.4 Proposed Scheme

∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀T gqi ∈ Vgq,

slack(T gqi) = ALAP (T gqi)− S(T gqi) (7.26)

where, S(T gqi) is the start time of T gqi returned by the TMC algorithm and ALAP (T gqi)
is the ALAP time of the task node T gqi in the qth instance of PTG Gg.

1. The tasks’ ALAP times are recursively calculated (in a bottom-up fashion) as
follows:
∀g ∈ [1, N], ∀q ∈ [1, Ig], ∀T gqi ∈ Vgq,

ALAP (T gqi) =

q ×Dg − egir, [If outdeg(T gqi) = 0]
min {q ×Dg, φ} − egir, [Otherwise]

where, φ = min
V

g′q′
j ∈succ(T gq

i)
ALAP (Vgqj)

2. ALAP times of the message nodes are recursively determined (upward) as follows:

ALAP (M gq
k) = min

V
g′q′
j ∈succ(Mgq

k
)
ALAP (Vgqj)− cgkr

where, succ(M gq
k) denotes the successors of message M gq

k .

At the next step, the currently assigned processor voltage/frequency-levels during the
execution of each task instance is enhanced by using the slack available in the system.
The selection of task nodes is based on a prioritization key called cost(T gqi) which is
defined as follows:

cost(T gqi) = max

E ′(T
g
i , r, l, l + 1)

egir(l+1) − e
g
irl

,
E ′(T gi , r, l, |Lr|)
egir(|Lr|) − e

g
irl

 (7.27)

The RHS of Equation 7.27 has two components. The first component provides an
estimate of the reduction in energy dissipated (per unit additional allocated time) due
to the execution of T gqi on processor Pr, as its level is increased from l to l + 1. The
second component provides a similar measure, as the level of T gqi is increased from its
current level l to its maximum level |Lr|. cost(T gqi) is obtained as the larger among these
two components.

183

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

The SAFLA algorithm makes a max-heap of task nodes with cost(T gqi) as the key.
The algorithm proceeds in an iterative fashion by repeatedly extracting task T gqi at the
root of the heap, incrementing its associated processor voltage/frequency-level by 1 (if
possible) and updating its slack and finish times. This level shift is actually allowed if
a feasible schedule can still be generated after incorporating the additional execution
time for T gqi within the schedule of Pr. If the maximum level |Lr| has still not been
reached (l < |Lr|), then SAFLA recomputes cost(T gqi) and reinserts T gqi into the heap.
Additionally, SAFLA updates the start times and finish times of descendant nodes, and
slack times of all nodes. This process repeats until residual resources are completely
exhausted or all tasks execute with their assigned processors operating at the lowest
frequencies (l = |Lr|). Algorithm 7 depicts a step-wise description of SAFLA.

Time Complexity of SAFLA: Assignment of base voltage/frequency-levels to
processors takes O(p) iterations (line no. 1). The complexity of computing a TMC
schedule is O(max{((∑N

g=1 I
g×ng)× log(∑N

g=1 I
g×ng)), (p× (∑N

g=1 I
g×mg)× b)}). The

overhead of adding dummy edges between mutually independent node pairs assigned on
the same resource is O(∑N

g=1 I
g × (ng +mg)) (line nos. 3 to 6). Computation overheads

associated with the calculation of slack(T gqi) and cost(T gqi) for all tasks (line nos. 7 to
11) are O(∑N

g=1 I
g × (ng + mg)). Formation of the initial max-heap (line no. 13) takes

O(∑N
g=1 I

g × ng). The voltage/frequency-level upgradation process at line no. 14 iter-
ates O(|Lr| ×

∑N
g=1 I

g × ng) times. Modification of the voltage/frequency-level, finish
time and along with the creation of UpdateList for the current task T gqi takes O(1)
time (line nos. 16 and 18 to 20). The overhead associated with the update of start
and finish times of all descendant nodes of T gqi requires O(∑N

g=1 I
g × (ng + mg)) time

(line nos. 21 to 27). Computation of cost(T gqi) and reinsertion of T gqi into the max-
heap (line nos. 28 to 29) takes O(log(∑N

g=1 I
g × ng)) time. Computation of slack time

for the task nodes in the max-heap require O(∑N
g=1 I

g × (ng + mg)) time (line nos. 30
to 31). So, the overhead associated with the while loop from line nos. 14 to 31 is
O(|Lr| ×

∑N
g=1(Ig × ng) × ∑N

g=1 I
g × (ng + mg)). Finally, time complexity of SAFLA

can be written as O(max{((∑N
g=1 I

g × ng) × log(∑N
g=1 I

g × ng)), (p × (∑N
g=1 I

g ×mg) ×

184

7.4 Proposed Scheme

ALGORITHM 7: SAFLA
Input: PTGs G, Processors P , Buses B
Output: Schedule of tasks and messages (start times of nodes, level to execute

each task)
1 Set maximum frequency (l = 1) to all processors
2 Compute start times of nodes and node-to-resource mapping using TMC

(Algorithm 6)
3 for each resource r do
4 for each mutually independent node pairs (Vi,Vj) assigned on resource r

do
5 if Vj executes immediately after Vi then
6 Add zero weighted edge (Vi 0−→ Vj)

7 for each PTG Gg ∈ G do
8 for each instance q ∈ {1, 2, . . . , Ig} do
9 for each task node T gqi ∈ Vgq do

10 Compute slack(T gqi) using Equation 7.26
11 Compute cost(T gqi) using Equation 7.27

12 Let l be the currently chosen voltage/frequency-level at which the processor
assigned to T gqi should operate during its execution

13 Create a max-heap of tasks using cost(T gqi) as key
14 while max-heap is non-empty do
15 Remove root node T gqi
16 ∆ei ← egir(l+1) − e

g
irl

17 if ∆ei ≤ slack(T gqi) then
18 Increase the processor level for task T gqi : l← l + 1
19 Update finish time of T gqi : F gq

i ← F gq
i + ∆ei

20 Create an empty successor list, UpdateList and add T gqi to it
21 while UpdateList is non-empty do
22 Remove the front node (say, Vg1q1

i1) from UpdateList
23 forall successor V

g2q2
i2 of Vg1q1

i1 do
24 if Sg2q2

i2 < F g1q1
i1 then

25 Update finish time of Vg2q2
i2 : F g2q2

i2 ← F g2q2
i2 + (F g1q1

i1 − Sg2q2
i2)

26 Update start time of Vg2q2
i2 : Sg2q2

i2 ← Sg2q2
i2 + (F g1q1

i1 − Sg2q2
i2)

27 Add V
g2q2
i2 to UpdateList

28 if (l + 1) < |Lr| then
29 Compute cost(T gqi) (Equation 7.27) and reinsert T gqi into the

max-heap
30 forall tasks T gqi in max-heap do
31 Compute slack(T gqi) using Equation 7.26

185

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

b), (|Lr| ×
∑N
g=1(Ig × ng) ×∑N

g=1 I
g × (ng + mg))}). Let use the symbols N and M to

denote ∑N
g=1 I

g × ng and ∑N
g=1 I

g × mg, respectively. Then, time complexity can be
represented as: O(max{(N × logN), (p×M× b), (|Lr| ×N × (N + M))}).

Example (contd.): Let us consider the PTG shown in Figure 7.2. The schedule con-
structed by TMC is depicted in Figure 7.3. From the given TMC schedule, it can
be seen that T 2,1

1 and T 1,1
1 are scheduled on the same processor P1. Hence, a zero-

weighted edge from T 2,1
1 to T 1,1

1 is added. Similarly, for all mutually independent pairs
of nodes scheduled on the same resource, a zero-weighted edge is added if one node
starts immediately after another. The initial values of slack(T gqi) and cost(T gqi) cor-
responding to task nodes are as follows: slack(T 1,1

1) = slack(T 1,1
2) = slack(T 1,1

3) =
slack(T 1,1

4) = slack(T 2,2
1) = slack(T 2,2

2) = slack(T 2,2
3) = 4, slack(T 2,1

1) = slack(T 2,1
2) =

slack(T 2,1
3) = 2 and cost(T 1,1

1) = cost(T 2,1
1) = cost(T 2,2

1) = cost(T 2,2
2) = cost(T 2,2

3) = 2.5,
cost(T 1,1

2) = cost(T 2,1
2) = 1.14, cost(T 1,1

3) = 0.54, cost(T 1,1
4) = 1.26, cost(T 2,1

3) = 0.87. A
max-heap is built using these cost(T gqi) values. The task T 1,1

1 with the highest key value
(currently, at the root of the max-heap) is extracted from the heap and its frequency
is decreased by enhancing the processor level from l = 1 to l = 2 as the additional
computation requirement, ∆e1 = 6 − 5 = 1, can be satisfied by the available slack
(slack(T 1,1

1) = 4). The finish time of T 1,1
1 becomes, F 1,1

1 + ∆e1 = 6 + 1 = 7. Now, with
respect to the finish time of T 1,1

1 , the start and finish times of the descendant nodes
are updated accordingly. The cost value (cost(T 1,1

1) = 2.79) of task T 1,1
1 is recomputed

using Equation 7.27 and it is reinserted into the max-heap as the assigned processor fre-
quency is still not at the maximum possible level (i.e., minimum frequency). The slack
times of all nodes are recomputed using Equation 7.26 (slack(T 1,1

1) = slack(T 1,1
2) =

slack(T 1,1
3) = slack(T 1,1

4) = 3, slack(T 2,1
1) = slack(T 2,1

2) = slack(T 2,1
3) = 2 and

slack(T 2,2
1) = slack(T 2,2

2) = slack(T 2,2
3) = 4).

Next T 1,1
1 , the task having the largest key, is extracted from the heap and the proces-

sor level is upgraded from l = 2 to l = 3. Its finish time F 1,1
1 becomes 8. The cost value

of task T 1,1
1 is recomputed and it is reinserted into the max-heap. Start and finish times

186

7.5 Experimental Evaluation

T 1,1
1,5T 2,1

1,1 T 2,2
1,6 T 2,2

2,4 T 2,2
3,5P1

T 1,1
2,1 T 1,1

4,1T 2,1
2,4P2

T 1,1
3,1T 2,1

3,1P3

M 1,1
1 M 1,1

4M 2,1
1 M 2,1

2B1

M 1,1
2B2

0 2 4 6 8 10 12 14 16 18 20

Figure 7.4: Example (SAFLA): The schedule as a gantt chart

of all successor nodes of T 1,1
1 , and slack times of all task nodes in the heap are updated

accordingly. This process repeats till the max-heap becomes empty (i.e., each task has
either been assigned to the maximum processor level (i.e., minimum frequency) or its
slack has become 0). Figure 7.4 show the gantt chart representing the final schedule.
Energy consumed by the schedule generated by SAFLA to execute all the PTGs (in
Figure 7.2) over the length of the hyperperiod is 87.05 units. This value corresponds to
a reduction of 22.83 in comparison to the TMC schedule (that SAFLA takes as input)
which consumes 109.88 units of energy. �

7.5 Experimental Evaluation

The performance of SAFLA, the strategy proposed in this chapter, has been experimen-
tally evaluated using real-world benchmark PTGs.

Experimental Setup: We have considered the following benchmark PTGs namely,
Gaussian Elimination (GE) [6], Epigenomics [2], Laplace [4] and Stencil [4], to experi-
mentally evaluate the algorithm’s performance.

• A Gaussian Elimination task graph contains ((χ2+χ−2)/2) task nodes & (χ2−χ−
1) message nodes, where χ is an input parameter. Figure 7.5a shows a Gaussian
Elimination task graph containing 14 task nodes and 19 message nodes, when
χ = 5.

• Epigenomics task graph contains (4γ + 4) task nodes & (5γ + 2) message nodes,

187

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

(a) (b) (c) (d)

Figure 7.5: (a) Gaussian Elimination (GE) [6], (b) Epigenomics [2] (c) Laplace [4] (d)
Stencil [4]

where γ is an input parameter. Figure 7.5b shows a Epigenomics task graph
containing 16 task nodes and 17 message nodes, when γ = 3.

• The Laplace PTG contains ϕ2 task nodes & (2ϕ2− 2ϕ) message nodes, where ϕ is
an input parameter. Figure 7.5c shows Laplace PTG containing the 16 task nodes
and 24 message nodes, when ϕ = 4.

• The Stencil PTG consists of (λ × ξ) task nodes & ((λ − 1) × (3ξ − 2)) message
nodes, where λ is an input parameter. For simplicity, we have assumed λ = ξ, in
our experiments. For example, Figure 7.5d shows a Stencil PTG with 16 tasks
and 30 messages, when λ = 4.

The parameters corresponding to the PTGs as well as the processing platforms are
varied as follows: (1) #task and message nodes: χ = {4} (Gaussian Elimination),
γ = {3} (Epigenomics), ϕ = {4} (Laplace), λ = {4} (Stencil). (2) #processors (p):
we have considered 4 or 8 processor systems. (3) #buses (b): Systems having 2 or
4 buses are considered. (4) Communication-to-Computation Ratio: CCR denotes the
ratio of the average cost of communication to computation for a given PTG. We have
conducted experiments for two distinct values of CCR(∈ {0.25, 0.5}). (5) #frequency-
levels of each processor is randomly chosen from the range [3, 6]. (6) Voltage (in volt)
and frequency (in GHz) at each processor level are taken from the uniform random

188

7.5 Experimental Evaluation

distribution [0.8, 3.2]. (7) Another uniform random distribution ([10 ms, 50 ms]) is
employed to obtain execution times egir1 for each task(Ti)-processor(Pr) combination (at
the base voltage/frequency-level) and communication times cgkr for each message(Mk)-
bus(Br) combination. Given a desired CCR, the obtained data communication times
cgkr are accordingly scaled.

Computation of the relative deadline of a PTG: For each PTGGg ∈ {G1, G2, . . . , GN},
first TMC is used to determine the makespan MLg considering all system resources to
be assigned to Gg (i.e. Gg runs stand alone), and assuming all processors to be always
executing at their maximum frequencies. After obtaining MLg of all the PTGs, the
relative deadline of Gg is computed using the formula:

Dg = Round-off(ML× {t1 + MLg −minMLg
maxMLg −minMLg

× t2}) (7.28)

Here, ML = ∑N
g=1 MLg. maxMLg and minMLg respectively represent the maxi-

mum and minimum MLg values among the given set of PTGs. The parameters t1 and
t2 are two constants whose values are set to 0.4 and 0.2, in our experiments. The Round-
off(x) function is used to round-off the argument x to the lowest multiple of 100 which
is greater than or equal to x.

Normalized Workload: It is the ratio of the total execution time of all the tasks over
all iterations across all PTGs on all processors within a hyperperiod H, to the total
available time on all processors over H. It is defined as,

NW =
∑N
g=1 I

g ×
(∑p

r=1
∑ng

i=1 e
g
ir1

)
H × p

Normalized Workload Ratio: Let us consider two workloads NWact and NWgen which
are identical in terms of the application DTGs considered, and individual deadlines of
the applications. Hence, both workloads does have the same hyperperiod as well as the
same number of instances for each DTG application. Workload NWact is obtained from
NWgen by multiplying the execution times of each task in NWgen by a constant NWR

(Normalized Workload Ratio). Thus, NWR (in %) = NWact

NWgen
× 100.

Comparison against baseline algorithm: To evaluate and compare the performance
of SAFLA, we have developed a baseline algorithm called, Baseline Slack Aware Multi-

189

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

PTG Scheduler (BSAMS). The basic structure of BSAMS is same as that of the SAFLA
algorithm. However, the voltage/frequency-level upgrade mechanism in BSAMS dif-
fers from SAFLA, being based on the existing strategy Multiple-Workflows-Slack-Time-
Reclaiming (MWSTR), proposed in [8]. While SAFLA employs a level-by-level enhance-
ment approach, MWSTR attempts to greedily upgrade the voltage/frequency-level for a
selected task to the maximum possible value by myopically attempting use of the entire
slack available at any given time, if required. Thus for BSAMS, the voltage/frequency-
level corresponding to the execution of a task may be upgraded by multiple levels in a
single iteration of the algorithm. Due to this mechanism, while the energy optimiza-
tion phase of SAFLA iterates O(|Lr|×

∑N
g I

g×ng) times, that for BSAMS iterates only
O(∑N

g I
g×ng) times. However, although BSAMS has lower time-complexity, its solution

qualities are significantly poorer than SAFLA as exhibited through our experiments.

Performance Metrics: (1) Normalized Energy-consumption (NE): NE (in %) =
EACT

EMAX
×100, where, EMAX and EACT denote the maximum and actual energy dissipated

in the execution of all instances of all PTGs over the length of the hyperperiod. In fact,
EMAX represents the total amount of energy that may be dissipated by continuously
operating all processors at their maximum voltages/frequencies (i.e., minimum level)
over the entire duration of the hyperperiod. EACT is the amount of energy consumed
by the processors to execute tasks as per the schedule generated by TMC, SAFLA or
BSAMS. (2) Normalized Running Time (NRT): It is the ratio of the total running time
to the total number of nodes (including both tasks and messages) over the hyperperiod.
NRT is defined as,

NRT = Total running time∑N
g=1 I

g × (ng +mg)
(7.29)

Each data point in the plots are obtained as the average over 500 runs of a specific
scheduler, on different PTG instances produced by carefully varying a chosen set of
parameters. The experiments are conducted on a system having Intel(R) Core(TM)
i5-4300U CPU running Linux Kernel 4.15.0-88-generic.

Experiment-1: Variation in #processors: Figure 7.6 shows the experimental
results. Here, #processors (p) is varied from 4 to 8, while fixing the number of buses (b)

190

7.5 Experimental Evaluation

to 4 and CCR to 0.5. It can be observed that the normalized energy-consumption NE

becomes lower as #processors increases, for any given value of NWR. This is because
as #processors become higher, residual capacity increases, and the system uses it to
decrease the processors’ voltage/frequency (i.e., enhance processor level). For example,
in Gaussian Elimination and Epigenomics (Figure 7.6a) with NWR = 85%, the NEs
returned by SAFLA for p = 4 and p = 8 are ∼21% and ∼7%, respectively.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: p = 4
BSAMS: p = 4

TMC: p = 4
SAFLA: p = 8

BSAMS: p = 8
TMC: p = 8

(a) GE, Epigenomics

 0

 10

 20

 30

 40

 50

 60

 70

 80

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: p = 4
BSAMS: p = 4

TMC: p = 4
SAFLA: p = 8

BSAMS: p = 8
TMC: p = 8

(b) GE, Epigenomics, Laplace

 0

 10

 20

 30

 40

 50

 60

 70

 80

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: p = 4
BSAMS: p = 4

TMC: p = 4
SAFLA: p = 8

BSAMS: p = 8
TMC: p = 8

(c) GE, Epigenomics, Laplace, Stencil

Figure 7.6: Variation in #processors

Experiment-2: Effect of variation in the no. of buses: The results of this
experiment is depicted in Figure 7.7. Here, #buses (b) is varied from 2 to 4, while fixing
#processors (p) to 8 and CCR to 0.5. It can be observed that the normalized energy-

191

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

consumption NE decreases with increase in the number of buses, for any given NWR
value. This may be attributed to the fact that as #buses become higher, the resource
contention for communication becomes lower, which in turn increases the overall residual
capacity. This capacity has been used by the system to enhance processor levels (i.e.,
decrease voltage/frequency) and it results in lower NE. For example, in Gaussian
Elimination and Epigenomics (Figure 7.7a) with NWR = 85%, the NEs returned by
SAFLA for b = 2 and b = 4 are ∼12% and ∼9%, respectively.

 0

 10

 20

 30

 40

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: b = 2
BSAMS: b = 2

TMC: b = 2
SAFLA: b = 4

BSAMS: b = 4
TMC: b = 4

(a) GE, Epigenomics

 0

 10

 20

 30

 40

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: b = 2
BSAMS: b = 2

TMC: b = 2
SAFLA: b = 4

BSAMS: b = 4
TMC: b = 4

(b) GE, Epigenomics, Laplace

 0

 10

 20

 30

 40

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: b = 2
BSAMS: b = 2

TMC: b = 2
SAFLA: b = 4

BSAMS: b = 4
TMC: b = 4

(c) GE, Epigenomics, Laplace, Stencil

Figure 7.7: Variation in #buses

Experiment-3: Effect of variation in CCR: The results of this experiment
is depicted in Figure 7.8. Here, CCR is varied from 0.25 to 0.5, while fixing p to 8

192

7.5 Experimental Evaluation

and b to 4. It can be observed that the normalized energy-consumption NE increases
with increase in CCR, for any given NWR value. This is because, with the increase in
CCR, the overall contention for message transmission increases, resulting in an overall
increase in makespan. This increase in makespan reduces the overall slack time which is
used by the system to reduce processor voltages/frequencies. For example, in Gaussian
Elimination and Epigenomics (Figure 7.8a) with NWR = 85%, the NEs returned by
SAFLA for CCR = 0.25 and CCR = 0.5 are ∼7% and ∼9%, respectively.

 0

 10

 20

 30

 40

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: CCR = 0.25
BSAMS: CCR = 0.25

TMC: CCR = 0.25
SAFLA: CCR = 0.5

BSAMS: CCR = 0.5
TMC: CCR = 0.5

(a) GE, Epigenomics

 0

 10

 20

 30

 40

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: CCR = 0.25
BSAMS: CCR = 0.25

TMC: CCR = 0.25
SAFLA: CCR = 0.5

BSAMS: CCR = 0.5
TMC: CCR = 0.5

(b) GE, Epigenomics, Laplace

 0

 10

 20

 30

 40

 25 40 55 70 85 100

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Normalized Workload Ratio (in %)

SAFLA: CCR = 0.25
BSAMS: CCR = 0.25

TMC: CCR = 0.25
SAFLA: CCR = 0.5

BSAMS: CCR = 0.5
TMC: CCR = 0.5

(c) GE, Epigenomics, Laplace, Stencil

Figure 7.8: Effect of variation in CCR

From Experiments-1, 2 and 3, it can be seen that NE increases with the increase in
NWR. This can be attributed to the fact that with the increase in NWR, the overall

193

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

execution times also increases. This in turn reduces the overall residual capacity of the
system. This decrease in residual capacity restricts processor level enhancement, thus
adversely affecting NE. Again, it can be observed that when NWR values are lower
than a specific threshold, the NE values for both SAFLA and BSAMS drop to their
minimum values (i.e., the processors always operate at their highest level). For example,
in Gaussian Elimination, Epigenomics (Figure 7.6a) with NWR = 25% and p = 4, the
NE value of SAFLA is ∼3%. Further in all scenarios, the proposed algorithm SAFLA
outperforms the baseline algorithm BSAMS.

Experiment-4: Variation in the number of PTGs: Figures 7.9a, 7.9b, and 7.9c,
show the results of this experiment considering two, three, and four types of application
PTGs, respectively. For example in Figure 7.9a, we consider two types of applications,
GE and Epigenomics. The values in the x-axis correspond to the number of applications
of each type considered in a given experiment. For example in Figure 7.9a, all points
corresponding to the value 4 on the x-axis show results of experiments conducted with
four GE and four Epigenomics applications. It may be noted that for a given figure (say,
Figure 7.9a), the individual deadlines and the hyperperiod remain same for all experi-
ments, as the number of application types considered are fixed. For these experiments,
the workloads are generated such that it is low when the number of applications are low.
The workload imposed on the system increases as the number of applications considered
in an experiment becomes higher. In order to generate low workloads for cases when the
number of applications are low, we keep deadlines relaxed for each application type. For
this purpose, we have fixed the values of t1 and t2 to 1.5 and 0.25 (in Equation 7.28),
instead of 0.4 and 0.2, as used for the other experiments. Here, we set p to 8, b to 4 and
CCR to 0.5. In Figure 7.9, it may be observed that the normalized energy-consumption
NE increases with increase in workload as the number of applications become higher.
For example in Gaussian Elimination and Epigenomics (Figure 7.9a), with 1 and 5 ap-
plications each for GE and Epigenomics, the NEs returned by SAFLA are ∼3% and
∼30%, respectively.

Experiment-5: Running Time Comparison: This experiment compares the

194

7.5 Experimental Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Number of each DTG

 SAFLA
 BSAMS

 TMC

(a) GE, Epigenomics

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Number of each DTG

 SAFLA
 BSAMS

 TMC

(b) GE, Epigenomics, Laplace

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5

N
o

rm
a

liz
e

d
 E

n
e

rg
y
-c

o
n

s
u

m
p

ti
o

n
 (

in
 %

)

Number of each DTG

 SAFLA
 BSAMS

 TMC

(c) GE, Epigenomics, Laplace, Stencil

Figure 7.9: Variation in the number of PTGs

normalized running times (NRT) of TMC, SAFLA and BSAMS. The results of this
experiment are depicted in Table 7.7. Here, p is varied from 4 to 8 while fixing b to 4,
CCR to 0.5 and NWR to 100%. It can be observed that the normalized running times
increase as the number of processors becomes higher. For example, in GE (Gaussian
Elimination) and Epigenomics, the NRT s of SAFLA (3rd column of Table 7.7) at p = 4
and p = 8 are 11.77 and 17.82 microseconds, respectively. It can also be observed that the
normalized running times increase with increase in the number of PTGs. For example
with p = 4, the NRT s of SAFLA for two PTGs (GE and Epigenomic) and four PTGs
(GE, Epigenomics, Laplace and Stencil) are 11.77 and 117.4 microseconds, respectively.

195

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

On the other hand, BSAMS having lower time-complexity compared to SAFLA, incurs
lower solution generation times in all cases. Similar trends are observed while varying
the number of buses.

#
Pr

oc
es

so
rs

GE,
Epigenomics

GE,
Epigenomics,

Laplace

GE,
Epigenomics,

Laplace, Stencil

TMC SAFLA BSAMS TMC SAFLA BSAMS TMC SAFLA BSAMS
4 1.48 11.77 7.44 1.31 36.07 20.87 1.36 117.4 100.44
8 1.86 17.82 8.46 1.72 56.82 20.97 1.73 268.25 100.81

Table 7.7: Normalized running time (in microseconds)

7.6 Case Study

To exhibit the practical applicability of the presented strategies to actual designs, we
discuss a case study using three automotive control applications, Electric Power Steer-
ing (EPS), Adaptive Cruise Controller (ACC) and Traction Controller (TC) [5]. ACC
automatically maintains a safe distance between two cars, while EPS provides neces-
sary steering assistance to the driver using an electric motor. The TC helps in actively
stabilizing the vehicle so that it can continue in its stipulated path even when road
conditions are slippery. Figures 7.10a, 7.10b, and 7.10c depict the block diagrams of
EPS, ACC and TC, respectively. The corresponding PTG representations are shown
in Figures 7.11a, 7.11b and 7.11c, respectively. For the purpose of this case study, the
PTGs are assumed to be executed on a three processor (P = {P1, P2, P3}) heteroge-
neous distributed platform interconnected via two heterogeneous buses (B = {B1, B2}).
Table 7.1 shows the voltages and frequencies of the processors at different levels. Ta-
ble 7.8, 7.9 and 7.10 lists the task execution times associated with the processors in P

at their highest frequencies and communication times of messages associated with the
buses in B. The execution/communication times of the dummy task/message nodes on
all processors/buses are set to 0.

196

7.6 Case Study

Hand-wheel
position Road-wheel

force

Desired hand-
wheel effort

Desired road-
wheel angle

Actuate steering-
rack motor

Force feedback
to driver

(a)

Current
throttle
position

Object
distance

and speed
Current speed

Desired speed

Desired braking
force

Desired throttle
position

Actuate throttle Actuate brakes

(b)

Left-rear
wheel speed

Left-front
wheel speed

Right-rear
wheel speed

Right-front
wheel speed

Yaw rateHand-wheel
position Lateral

acceleration

Desired braking
force

Actuate
brakes

Actuate
throttle

(c)

Figure 7.10: Block diagram: (a) Electric Power Steering (EPS), (b) Adaptive Cruise Con-
troller (ACC), (c) Traction Controller (TC)

EPS (G1; D1 = 1500µs)
T 1

1 T 1
2 T 1

3 T 1
4 T 1

5 T 1
6 M1

1 M1
2 M1

3 M1
4 M1

5

P1 150 170 300 250 150 100 - - - - -
P2 130 200 250 330 180 140 - - - - -
P3 170 130 400 280 120 130 - - - - -
B1 - - - - - - 130 250 300 250 170
B2 - - - - - - 200 190 200 300 200

Table 7.8: Execution and communication times: Electric Power Steering (EPS)

We have employed SAFLA to generate schedules for PTGs EPS, ACC and TC with
the objective of minimizing overall energy consumption. We summarize below the im-

197

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

T 1
1 T 1

2

M 1
1 M 1

2 M 1
3

T 1
3 T 1

4

M 1
4 M 1

5

T 1
5 T 1

6

(a)

T 2
1 T 2

2 T 2
3

M 2
1

M 2
2 M 2

3

T 2
4

M 2
4 M 2

5

T 2
5 T 2

6

M 2
6 M 2

7

T 2
7 T 2

8

(b)

T 3
6

M 3
1 M 3

2 M 3
3 M 3

4

T 3
1 T 3

2 T 3
3 T 3

4

T 3
5 T 3

7

M 3
6M 3

5 M 3
7

T 3
8

M 3
8 M 3

9

T 3
9 T 3

10

(c)

Figure 7.11: PTG representation: (a) Electric Power Steering (EPS), (b) Adaptive Cruise
Controller (ACC), (c) Traction Controller (TC)

ACC (G2; D2 = 3000µs)
T 2

1 T 2
2 T 2

3 T 2
4 T 2

5 T 2
6 T 2

7 T 2
8 M2

1 M2
2 M2

3 M2
4 M2

5 M2
6 M2

7

P1 170 300 150 300 250 200 150 200 - - - - - - -
P2 200 150 250 320 190 240 170 300 - - - - - - -
P3 150 220 170 270 270 270 160 210 - - - - - - -
B1 - - - - - - - - 150 330 320 220 140 200 300
B2 - - - - - - - - 200 200 350 300 210 140 180

Table 7.9: Execution and communication times: Adaptive Cruise Controller (ACC)

portant observations associated with the obtained schedules for SAFLA (Figure 7.12):

• Constraint Satisfaction: (i) For any given resources (processor/bus), no two tasks/
messages commence execution/transmission at the same time, (ii) resource con-
straints have always been satisfied, (iii) constraints related to inter-node depen-
dencies have been adhered to. For example, task T 1,1

1,3 commences execution on
processor P2 at time 0 µs. While being processed on P2, no task barring T 1,1

1,3 exe-
cutes on P1 (thus, satisfying resource usage constraint). As both predecessor and

198

7.6 Case Study

TC (G3; D3 = 3000µs)
T 3

1 T 3
2 T 3

3 T 3
4 T 3

5 T 3
6 T 3

7 T 3
8 T 3

9 T 3
10 M3

1 M3
2 M3

3 M3
4 M3

5 M3
6 M3

7 M3
8 M3

9

P1 200 200 200 200 150 300 180 400 150 200 - - - - - - - - -
P2 180 230 210 250 200 350 170 200 190 300 - - - - - - - - -
P3 220 220 240 180 130 310 190 250 140 260 - - - - - - - - -
B1 - - - - - - - - - - 150 220 300 250 170 240 180 210 120
B2 - - - - - - - - - - 200 190 200 350 190 150 220 170 200

Table 7.10: Execution and communication times: Traction Controller (TC)

T 1,2
4,5 T 1,2

6,4T 2,1
1,4T 2,1

3,5 T 2,1
4,5 T 2,1

6,4 T 2,1
8,4T 3,1

2,4T 3,1
3,4T 3,1

4,4P1

T 1,1
1,3 T 1,1

3,3 T 1,1
5,4 T 1,2

1,3 T 1,2
3,3T 2,1

2,3 T 2,1
5,3 T 2,1

7,3T 3,1
1,3 T 3,1

6,2P2

T 1,1
2,6 T 1,1

4,5 T 1,1
6,5 T 1,2

2,5 T 1,2
5,5T 3,1

5,5T 3,1
7,6 T 3,1

8,5 T 3,1
9,5T 3,1

10,5P3

M 1,2
2M 2,1

2 M 2,1
4M 3,1

4B1

M 1,1
2 M 1,2

3 M 1,2
4M 2,1

1M 3,1
2M 3,1

3 M 3,1
6B2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Figure 7.12: Case study: Gantt chart representation of the schedule

successor task nodes T 1,1
1,3 and T 1,1

3,3 of M1,1
1 are allocated on to the same processor

P2, no communication overhead (M1,1
1) is incurred for transmission of the output

of T 1,1
1,3 to T 1,1

3,3 . The message node M1,1
2 start its transmission at time 182 µs on

bus B2 after the parent task node T 1,1
1,3 complete its execution, satisfying inter-node

dependencies.

• Heterogeneity Modeling: Each node of a PTG at each iteration consumes an ap-
propriate execution/transmission time according to the processor/bus allocated to
it. For example, task T 1,1

4,5 of PTG G1 (EPS) at iteration q = 1 is scheduled on
processor P3 and execute for 405 µs (=

⌈
e1

4,3,1×f3,1

f3,5

⌉
=
⌈

280×2.6
1.8

⌉
).

• Energy consumed by the schedule generated by SAFLA to execute all the DTGs
(in Figure 7.11) over the length of the hyperperiod is 15686.2 units. This value

199

7. SCHEDULING MULTIPLE INDEPENDENT PTG APPLICATIONS ON
SHARED-BUS PLATFORM

corresponds to a reduction of 7016.89 compared to the TMC schedule (that SAFLA
takes as input), which consumes 22703.09 units of energy, and the NE becomes
73.44%.

7.7 Summary

This chapter considered the problem of designing heterogeneous processor-shared bus
co-scheduling strategies for a given set of independent periodic applications, each of
which is modelled as a PTG, with the objective to minimize system level energy dissi-
pation. An ILP based optimal scheme called ILP-ES is proposed to solve the scheduling
problem at hand. However, ILP-ES is associated with very high computational com-
plexity and is not scalable even for small problem sizes. Therefore, we proposed an
efficient but low-overhead heuristic strategy called SAFLA which consumes drastically
lower time and space complexities while generating good and acceptable solutions. The
presented experimental results show the effectiveness and practical applicability of the
proposed heuristic SAFLA. Finally, we presented a case study using a set of control
applications from automotive systems. The next chapter summarizes the contributions
of this dissertation and discusses a few possible extensions to this research.

200

Chapter 8
Conclusion and Future Work

In this chapter, we summarize the contributions of this dissertation and outline some
possible directions for future work.

8.1 Discussion and Summarization

This dissertation presents a few novel real-time optimal/heuristic offline task-message
co-scheduling strategies for safety-critical CPSs consisting of various types of task and
execution platform scenarios. We now present brief summaries of these works in more
detail.

CPSs, including those in the automotive domain, are often designed by assigning to
each task an appropriate criticality-based reward value that is acquired by the system on
its successful execution. Additionally, each task may have multiple implementations des-
ignated as service-levels, with higher service-levels producing more accurate results and
contributing to higher rewards for the system. In our first contributory chapter (Chap-
ter 3), we have presented co-scheduling strategies for a set of independent periodic tasks
executing on a bus-based homogeneous multiprocessor system, with the objective of
maximizing system level QoS. The problem is posed as a Multi-dimensional Multiple-
Choice Knapsack formulation (MMCKP). We present a Dynamic Programming (DP)
solution (called MMCKP-DP) for this problem. Although DP delivers optimal solutions,
it suffers from significantly high overheads (in terms of running time and main memory
consumption) which steeply increase as the number of tasks, service-levels, processors

201

8. CONCLUSION AND FUTURE WORK

and buses in the system grows, and severely restricts the scalability of the strategy.
Such large time and space overheads are often not affordable, especially when multi-
ple quick design iterations are needed during design space exploration and/or powerful
server systems are not available at the designer’s disposal. Therefore, in addition to
the optimal solution approach, we have proposed an efficient, low-overhead, greedy but
balanced heuristic strategy called ALOLA which consumes drastically lower time and
space complexities while generating good and acceptable solutions that do not signifi-
cantly deviate from the optimal solutions. Our simulation based experimental evaluation
shows that even on moderately large systems consisting of 90 tasks with 5 service-levels
each, 16 processors and 4 buses, while MMCKP-DP incurs a run-time of more than 1
hour 20 minutes and approximately 68 GB main memory, ALOLA takes only about 196
µs (speedup of the order of 106 times) and less than 1 MB of memory. Moreover, while
being fast, ALOLA is also efficient being able to control performance degradations to at
most 13% compared to the optimal results produced by MMCKP-DP.

In Chapter 3, we have considered the problem of scheduling real-time independent
task sets running on homogeneous multiprocessor systems. However, Continuous de-
mands for higher performance and reliability within stringent resource budgets is driving
a shift from homogeneous to heterogeneous processing platforms for the implementation
of today’s CPSs. These CPSs are often distributed in nature and typically represented
as PTGs due to the complex interactions between their functional components. In Chap-
ters 4 and 5, we have considered the problem of scheduling a real-time system modeled
as a PTG, where tasks may have multiple implementations designated as service-levels,
with higher service-levels producing more accurate results and contributing to higher
rewards/QoS for the system. In this work, we have proposed the design of ILP based
optimal scheduling strategies as well as low-overhead heuristic schemes for scheduling a
real-time PTG executing on a distributed platform consisting of a set of fully-connected
heterogeneous processing elements. First, we have developed an ILP based optimal so-
lution strategy namely, ILP-SATC, which follows an intuitive design flow and represents
all specifications related to resource, timing and dependency, through a systematic set of

202

8.1 Discussion and Summarization

constraints. However, its scalability is limited primarily due to the explicit manipulation
of task mobilities between their earliest and latest start times. In order to improve scal-
ability, a second strategy namely, ILP-SANC has been designed. ILP-SANC is based on
the non-overlapping approach [9] which sets constraints and variables in such a way that
no two tasks executing on the same processor overlap in time. Further in ILP-SANC,
the total number of constraints required to compute a schedule for a PTG becomes
independent of the deadline of a given PTG, which helps to control complexity of the
proposed scheme.

Though ILP-SANC shows appreciable improvements in terms of scalability over the
ILP-SATC, it still suffers from high computational overheads (in terms of running time)
as the number of nodes in a PTG and/or the number of resources, increase. Therefore, we
have proposed two low-overhead heuristics (i) G-SAQA and (ii) T-SAQA. Both G-SAQA
and T-SAQA internally make use of PEFT [1], a well known PTG scheduling algorithm
on heterogeneous multiprocessor systems, to compute a baseline schedule which assumes
all task nodes to be at their base service-levels. Since PEFT attempts to minimize
schedule length, the resulting schedule length may be marked by unutilized slack time
before deadline. G-SAQA only considers global slack (= Deadline−PEFT makespan)
to upgrade service-levels of tasks in the PTG. However, a closer look at the PEFT
schedule reveals that there exists gaps within the scheduled nodes of the PTG which
could be used along with the global slack to achieve better performance in terms of
service-levels and delivered rewards, compared to G-SAQA. It may also be possible
to consolidate multiple small gaps within the PEFT schedule into larger consolidated
slacks which may be used to further improve performance in terms of achieved rewards.
Therefore, the total slack available with a task at any given time comprises of the global
slack along with the maximum consolidated inter-node gap between the task and its
successor on its assigned processor in the PEFT schedule. With the above insights
on the total task-level slacks available in a PTG, another heuristic namely, T-SAQA is
proposed with the objective of achieving better performance compared to G-SAQA. Our
simulation based experimental results show that both the heuristic schemes (G-SAQA

203

8. CONCLUSION AND FUTURE WORK

and T-SAQA) are about ∼106 times faster on an average than the optimal strategy
ILP-SANC. The results show that both T-SAQA and G-SAQA returns at most ∼30%
and ∼45% less rewards than ILP-SANC, respectively. In all cases, T-SAQA outperforms
G-SAQA in terms of reward maximization while T-SAQA consumes more running time
than G-SAQA.

The PTG scheduling technique considered in Chapters 4 and 5 assumed a fully
connected heterogeneous platform. Assumption of a fully connected platform helps to
avoid the problem of resource contention, as is the case when the system is assumed
to be associated with shared data transmission channels. However, it may be appreci-
ated that shared bus networks form a very commonly used communication architecture
in CPSs [41, 42]. Therefore, Chapter 6 extends the problem of scheduling PTGs on
fully-connected platforms, to CPS systems where the processors are connected through
a limited number of bus based shared communication channels. In this work, we have
presented the design of ILP based optimal scheduling strategies as well as low-overhead
heuristic schemes for the scheduling of real-time PTGs executing on a distributed plat-
form consisting of a set of heterogeneous processing elements interconnected by het-
erogeneous shared buses. We present two ILP based strategies namely, ILP-ETR and
ILP-NC. The design philosophies of ILP-ETR and ILP-NC are similar to the formu-
lations ILP-SATC (Chapter 4, Section 4.3) and ILP-SANC (Chapter 4, Section 4.4)
respectively, proposed in Chapter 4 for PTG scheduling on fully connected heteroge-
neous platform. Although ILP-ETR follows an intuitive design flow, its scalability is
limited primarily due to the explicit manipulation of task mobilities between their ear-
liest and latest start times. In comparison, ILP-NC being based on the non-overlapping
approach [9], exhibits significantly better scalability. Experimental results show that
ILP-ETR takes ∼5 hours to compute the schedule of a PTG with ∼20 nodes executing
on a system with 4 processor and 2 buses with the deadline of the PTG set to the opti-
mal makespan. On the other hand, ILP-NC takes only ∼12 secs to compute a schedule
for the same. In addition to the two optimal ILP based approaches, we have designed a
fast and efficient heuristic strategy namely, CC-TMS for the problem at hand. CC-TMS

204

8.1 Discussion and Summarization

is based on a list scheduling based heuristic approach to co-schedule task and message
nodes in a real-time PTG executing on a distributed system consisting of a set of het-
erogeneous processors interconnected by heterogeneous shared buses. To evaluate the
performance of CC-TMS with respect to optimal solutions, we have defined a metric
called Makespan Ratio as follows:

Makespan Ratio = Optimal Makespan

Heuristic Makespan
× 100 (8.1)

Extensive simulation based experimental results show that CC-TMS achieves 97% and
58% (Makespan Ratio) in the best and worst case scenarios, respectively.

The works done in Chapters 4, 5 and 6 dealt with the co-scheduling of a single
task graph on heterogeneous distributed platform. In Chapter 7, our last contributory
chapter, we have endeavoured towards the design of processor-shared bus co-scheduling
strategies for a given set of independent periodic applications, each of which is mod-
elled as a PTG. In particular, we have developed an ILP based optimal and heuristic
strategy for the mentioned system model, whose objective is to minimize system level
dynamic energy dissipation. To achieve energy savings, the processors in the system
are assumed to be DVFS enabled and thus, the operating frequencies of these proces-
sors can be dynamically reconfigured to a discrete set of alternative voltage/frequency-
levels at run-time. The proposed ILP based optimal scheme called ILP-ES is associated
with very high computational complexity and is not scalable even for small problem
sizes. Therefore, we have proposed an efficient but low-overhead heuristic strategy called
SAFLA which consumes drastically lower time and space complexities while generating
good and acceptable solutions. The SAFLA algorithm starts by using an efficient co-
scheduling algorithm TMC which actually extend the CC-TMS algorithm (Chapter 6,
Algorithm 4) to schedule multiple periodic PTGs executing on a shared bus-based het-
erogeneous distributed platform. This schedule is generated assuming all processors to
be running at their highest frequency for the entire duration of the schedule. Now, the
available slack associated with each task node is used to enhance the tasks’ assigned
voltage/frequency-levels in an endeavour to minimize energy dissipation while retaining

205

8. CONCLUSION AND FUTURE WORK

task-to-processor/message-to-bus mappings as provided by TMC. Experimental results
show that SAFLA is an effective scheduling scheme and delivers handsome savings in
terms of lower energy consumption in most practical scenarios.

8.2 Future Works

The work presented in this thesis leaves several open directions and there is ample scope
for future research in this area. In this section, we present few such future perspectives.

• Deployment of ALOLA on real communication frameworks: The proposed
scheme ALOLA in Chapter 3, is a generic processor-bus co-scheduling strategy
which has not been designed with any particular protocol in mind. As part of our
future work, we plan to conduct experiments on a real CAN-based Distributed
Cyber-Physical Systems (CPSs) test bed. We also plan to design a co-scheduling
strategy for application with futuristic communication frameworks such as Time
Sensitive Networking (TSN; IEEE 802.1Qbv; [57–59]). TSN is a switched Ethernet
based protocol which can support precise real-time communication. The proposed
co-scheduling strategy must be significantly extended for employment with pro-
tocols such as TSN. TSN allows each message to be split into multiple Ethernet
frames with each frame being possibly transmitted through distinct paths. Each
such path may pass through multiple intermediate switches. For effective real-time
data transmission, the necessary output ports of each such switch must be appro-
priately scheduled so that all frames of all messages reach their destinations before
the end of their respective periods. Thus here, although the processor schedule
can still be similar to ALOLA, the corresponding communication schedule may be
considerably more involved and will be taken up as a future work.

• Co-scheduling dynamic task sets in the presence of persistent tasks:
Chapter 3 addresses the problem of co-scheduling a set of independent periodic
tasks with multiple service-levels, executing on a bus-based homogeneous mul-
tiprocessor system. As solution approaches, we have devised both optimal and

206

8.2 Future Works

heuristic static offline scheduling schemes. However, CPSs like automotive sys-
tems may consist of both safety critical and non-safety critical applications and
these applications may be represented as real-time independent tasks or PTGs.
Safety critical tasks like anti-lock braking system, fuel injection, chassis control,
traction control, etc., are persistent in nature. These tasks are triggered at the
start of the system and continue running periodically till the system stops. On the
other hand, non-safety critical tasks like air conditioning system, power window,
infotainment system, etc., are non-persistent in nature. These tasks are triggered
dynamically at run time and terminate after execution of one or more instances.
These tasks may have multiple QoS levels and may be executed on homogeneous
or heterogeneous platform which are centralized or distributed. Here, we plan to
address the following problem: Given a set of persistent and dynamic tasks (which
may arrive at any time when the system is under operation) the objective is to
generate a real-time schedule which allows guaranteed execution of all persistent
tasks, while maximizing the number of dynamic tasks that can be incorporated.
As in many of our earlier chapters, we plan to employ a heterogeneous shared
bus-based distributed system as the execution platform.

• Design strategies to enhance run-time resource utilization: The static re-
source allocation strategies developed as part of this thesis are based on wort-case
resource usage estimates of applications. These schemes may be prone to signifi-
cant performance degradations when actual resource usage of the applications are
significantly less than their worst-case estimates. Research in the last few years
has revealed that the mapping and scheduling mechanisms in these scenarios may
need to be both static and dynamic. The static part first provides a cost-optimal
constraint-driven scheduling, allocation and assignment of various functional com-
ponents of all the available resources; this step should not be intended to generate
a single solution, but to generate an execution plan consisting of a set of optional
solutions which the dynamic part can use to take decisions according to different
run-time conditions. The dynamic part should be fast and must efficiently do a

207

8. CONCLUSION AND FUTURE WORK

T1

M1 M2

T2 T3

M3 M4

T4

(a)

T1

M1

T2 T3

M3 M4

T4

(b)

Figure 8.1: (a) PTG with unicast, (b) PTG with multicast

combined architecture load and power-aware run-time scheduling according to the
execution plan provided by the static part, such that real-time constraints are met.
However, determination of the exact offline-online strategies to be employed for
specific system scenarios at hand is non-trivial and demands considerable research.

• Multicast bus messaging in PTG scheduling scenarios for improved re-
source utilization: Chapters 6 and 7 addressed the problem of co-scheduling
real-time PTGs running on shared bus-based heterogeneous multiprocessor sys-
tems. These works used unicast communication to send a message from one task
to another. However, a task may need to send the same message to multiple task
nodes. For example in Figure 8.1a, task T1 sends messages M1 and M2 to task
nodes T2 and T3, respectively. However, it may happen that both the message
nodes M1 and M2 contain the same data. In this scenario, the task T1 can send
only one multicast message (M1) as shown in Figure 8.1b instead of two separate
messages. Needless to say that this will reduce the overall communication load
leading to potentially improved scheduled performance. However, multicast mes-
saging within a PTG scheduling scenario is a non-trivial extension and requires
considerable research. We intended to design both optimal and heuristic solution
strategies for this problem.

208

8.2 Future Works

P1

P2 P3

P4

SW1 SW2

Figure 8.2: Example of an ad hoc network; Here, P1, P2, P3, P4 are processors and SW1, SW2
are switches

• Adaptation of PTG scheduling to more generalized ad hoc point-to-
point networks: The PTG scheduling problems presented in Chapters 6 and
7 considered shared bus-based heterogeneous multiprocessor systems. In those
works, the assumption was that all processors are connected to all buses. In
general, processors are connected through a network, and a processor may be
connected to a subset of buses. To schedule real-time PTGs on multiprocessor
systems connected through an ad hoc point-to-point network, the transmission of
a message have to complete within a bounded time. A message may have multiple
paths to reach the destination from a given source and each such path may take
a different amount of time. The co-scheduling of tasks and messages for PTGs
on multiprocessor systems interconnected to an ad hoc point-to-point network,
requires ample research and will be taken up as a future work.

209

8. CONCLUSION AND FUTURE WORK

8.3 Disseminations out of this Work

Journal Papers
Published/Submitted

1. Sanjit Kumar Roy, Rajesh Devaraj, Arnab Sarkar, Sayani Sinha and Kankana
Maji. “Contention-aware optimal scheduling of real-time precedence-constrained
task graphs on heterogeneous distributed systems.” Elsevier Journal of Systems
Architecture (JSA), Volume 105, 2020.

2. Sanjit Kumar Roy, Rajesh Devaraj and Arnab Sarkar. “Contention Cognizant
Scheduling of Task Graphs on Shared Bus based Heterogeneous Platforms.” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE
TCAD), Volume 41, Pages 281-293, 2021.

3. Sanjit Kumar Roy, Rajesh Devaraj, Arnab Sarkar and Debabrata Senapati.
“SLAQA: Quality-level Aware Scheduling of Task Graphs on Heterogeneous Dis-
tributed Systems.” ACM Transactions on Embedded Computing Systems (ACM
TECS), Volume 20, Pages 1-31, 2021.

4. Sanjit Kumar Roy, Rajesh Devaraj and Arnab Sarkar. “SAFLA: Schedul-
ing Multiple Real-time Periodic Task Graphs on Heterogeneous Systems.” IEEE
Transactions on Computers (IEEE TC), (Accepted).

Conference Papers

1. Sanjit Kumar Roy, Rajesh Devaraj, Arnab Sarkar, Sayani Sinha and Kankana
Maji. “Optimal scheduling of precedence-constrained task graphs on heterogeneous
distributed systems with shared buses.” IEEE 22nd International Symposium on
Real-Time Distributed Computing (ISORC), Pages 185-192, 2019.

2. Sanjit Kumar Roy, Rajesh Devaraj and Arnab Sarkar. “Optimal scheduling of
PTGs with multiple service levels on heterogeneous distributed systems.” Ameri-
can Control Conference (ACC), Pages 157-162, 2019.

210

8.3 Disseminations out of this Work

3. Sanjit Kumar Roy, Arnab Sarkar and Rahul Gangopadhyay. “Processor and
Bus Co-scheduling Strategies for Real-time Tasks with Multiple Service-levels.”
IEEE 27th International Conference on Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), Pages 21-30, 2021.

211

8. CONCLUSION AND FUTURE WORK

212

References

[1] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for heterogeneous
systems by an optimistic cost table,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 3, pp. 682–694, 2014. [Pg.xxii], [Pg.xxviii], [Pg.4], [Pg.6],
[Pg.11], [Pg.29], [Pg.35], [Pg.42], [Pg.44], [Pg.70], [Pg.82], [Pg.83], [Pg.86], [Pg.90],
[Pg.94], [Pg.96], [Pg.103], [Pg.105], [Pg.112], [Pg.138], [Pg.141], [Pg.152], [Pg.175],
[Pg.203]

[2] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, “Charac-
terizing and profiling scientific workflows,” Future Generation Computer Systems,
vol. 29, no. 3, pp. 682–692, 2013. [Pg.xxii], [Pg.xxiii], [Pg.xxiv], [Pg.82], [Pg.83],
[Pg.103], [Pg.143], [Pg.187], [Pg.188]

[3] C. Bolchini and A. Miele, “Reliability-driven system-level synthesis for mixed-
critical embedded systems,” IEEE Transactions on Computers, vol. 62, no. 12,
pp. 2489–2502, 2013. [Pg.xxii], [Pg.87], [Pg.88]

[4] A. Benoit, M. Hakem, and Y. Robert, “Contention awareness and fault-tolerant
scheduling for precedence constrained tasks in heterogeneous systems,” Parallel
Computing, vol. 35, no. 2, pp. 83–108, 2009. [Pg.xxii], [Pg.xxiii], [Pg.xxiv], [Pg.103],
[Pg.143], [Pg.187], [Pg.188]

[5] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Dependable communication syn-
thesis for distributed embedded systems,” Reliability Engineering & System Safety,
vol. 89, no. 1, pp. 81–92, 2005. [Pg.xxiii], [Pg.87], [Pg.116], [Pg.155], [Pg.156],
[Pg.196]

213

REFERENCES

[6] H. Topcuoglu et al., “Performance-effective and low-complexity task scheduling for
heterogeneous computing,” IEEE transactions on parallel and distributed systems,
vol. 13, no. 3, pp. 260–274, 2002. [Pg.xxiii], [Pg.xxiv], [Pg.4], [Pg.6], [Pg.29], [Pg.35],
[Pg.42], [Pg.43], [Pg.44], [Pg.94], [Pg.138], [Pg.141], [Pg.143], [Pg.152], [Pg.175],
[Pg.187], [Pg.188]

[7] T. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS negotiation in real-time systems
and its application to automated flight control,” IEEE Transactions on Computers,
vol. 49, no. 11, pp. 1170–1183, 2000. [Pg.xxvii], [Pg.64], [Pg.65]

[8] J. Jiang, Y. Lin, G. Xie, L. Fu, and J. Yang, “Time and energy optimization algo-
rithms for the static scheduling of multiple workflows in heterogeneous computing
system,” Journal of Grid Computing, vol. 15, no. 4, pp. 435–456, 2017. [Pg.xxviii],
[Pg.42], [Pg.43], [Pg.44], [Pg.162], [Pg.163], [Pg.166], [Pg.190]

[9] S. Venugopalan and O. Sinnen, “ILP formulations for optimal task scheduling with
communication delays on parallel systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 1, pp. 142–151, 2015. [Pg.3], [Pg.5], [Pg.10], [Pg.14],
[Pg.29], [Pg.35], [Pg.42], [Pg.44], [Pg.77], [Pg.131], [Pg.203], [Pg.204]

[10] “CPLEX Optimizer: https://www.ibm.com/analytics/data-science/prescriptive-
analytics/cplex-optimizer.” [Online]. Available: https://www.ibm.com/
analytics/data-science/prescriptive-analytics/cplex-optimizer [Pg.4], [Pg.76],
[Pg.84], [Pg.105], [Pg.130], [Pg.145]

[11] G. Xie, R. Li, and K. Li, “Heterogeneity-driven end-to-end synchronized scheduling
for precedence constrained tasks and messages on networked embedded systems,”
Journal of Parallel and Distributed Computing, vol. 83, pp. 1–12, 2015. [Pg.4],
[Pg.6], [Pg.29], [Pg.35], [Pg.42], [Pg.44], [Pg.94], [Pg.138], [Pg.175]

[12] R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in a heterogeneous
environment,” IEEE Transactions on Parallel and Distributed Systems, vol. 15,
no. 2, pp. 107–118, 2004. [Pg.4], [Pg.6], [Pg.29], [Pg.35], [Pg.42]

[13] S. Bansal, P. Kumar, and K. Singh, “Dealing with heterogeneity through limited
duplication for scheduling precedence constrained task graphs,” Journal of Parallel

214

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer

REFERENCES

and Distributed Computing, vol. 65, no. 4, pp. 479–491, 2005. [Pg.4], [Pg.6], [Pg.29],
[Pg.35], [Pg.42]

[14] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor
systems,” ACM Computing Surveys (CSUR), vol. 43, no. 4, p. 35, 2011. [Pg.4],
[Pg.21], [Pg.40]

[15] H. Baek, J. Lee, and I. Shin, “Multi-level contention-free policy for real-time multi-
processor scheduling,” Journal of Systems and Software, vol. 137, pp. 36–49, 2018.
[Pg.4], [Pg.40]

[16] H. S. Chwa, H. Back, J. Lee, K.-M. Phan, and I. Shin, “Capturing urgency and
parallelism using quasi-deadlines for real-time multiprocessor scheduling,” Journal
of Systems and Software, vol. 101, pp. 15–29, 2015. [Pg.4], [Pg.40]

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp.
46–61, 1973. [Pg.5], [Pg.40]

[18] B. Andersson and J. Jonsson, “The utilization bounds of partitioned and pfair
static-priority scheduling on multiprocessors are 50%,” in Real-Time Systems, 2003.
Proceedings. 15th Euromicro Conference on. IEEE, 2003, pp. 33–40. [Pg.5], [Pg.40]

[19] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate
progress: A notion of fairness in resource allocation,” Algorithmica, vol. 15, no. 6,
pp. 600–625, 1996. [Pg.5], [Pg.40], [Pg.44]

[20] J. H. Anderson and A. Srinivasan, “Mixed Pfair/ERfair scheduling of asynchronous
periodic tasks,” in Real-Time Systems, 13th Euromicro Conference on, 2001. IEEE,
2001, pp. 76–85. [Pg.5], [Pg.40]

[21] ——, “Early-release fair scheduling,” in Proceedings 12th Euromicro Conference on
Real-Time Systems. Euromicro RTS 2000. IEEE, 2000, pp. 35–43. [Pg.5], [Pg.40],
[Pg.44]

[22] D. Zhu, D. Mossé, and R. Melhem, “Multiple-resource periodic scheduling problem:
how much fairness is necessary?” in RTSS 2003. 24th IEEE Real-Time Systems
Symposium, 2003. IEEE, 2003, pp. 142–151. [Pg.5], [Pg.40]

215

REFERENCES

[23] A. Khemka and R. Shyamasundar, “An optimal multiprocessor real-time scheduling
algorithm,” Journal of parallel and distributed computing, vol. 43, no. 1, pp. 37–45,
1997. [Pg.5], [Pg.40]

[24] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling algo-
rithm for multiprocessors,” in 2006 27th IEEE International Real-Time Systems
Symposium (RTSS’06). IEEE, 2006, pp. 101–110. [Pg.5], [Pg.40]

[25] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Run: Optimal multi-
processor real-time scheduling via reduction to uniprocessor,” in 2011 IEEE 32nd
Real-Time Systems Symposium. IEEE, 2011, pp. 104–115. [Pg.5], [Pg.40]

[26] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “DP-FAIR: A simple
model for understanding optimal multiprocessor scheduling,” in Real-Time Systems
(ECRTS), 2010 22nd Euromicro Conference on. IEEE, 2010, pp. 3–13. [Pg.5],
[Pg.10], [Pg.40], [Pg.41], [Pg.44]

[27] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algo-
rithms and applications. Springer, 2011, vol. 24. [Pg.5], [Pg.6], [Pg.21], [Pg.41]

[28] X. Wang, Z. Li, and W. M. Wonham, “Dynamic multiple-period reconfiguration of
real-time scheduling based on timed DES supervisory control,” IEEE Transactions
on Industrial Informatics, vol. 12, no. 1, pp. 101–111, 2016. [Pg.5], [Pg.41]

[29] G. Srinivasa Prasanna and B. R. Musicus, “Generalised multiprocessor schedul-
ing using optimal control,” in 3rd annual symposium on Parallel algorithms and
architectures. ACM, 1991, pp. 216–228. [Pg.5], [Pg.41], [Pg.44]

[30] G. S. Prasanna and B. R. Musicus, “Generalized multiprocessor scheduling and ap-
plications to matrix computations,” IEEE Transactions on Parallel and Distributed
systems, vol. 7, no. 6, pp. 650–664, 1996. [Pg.5], [Pg.42]

[31] J. Liu, Q. Zhuge, S. Gu, J. Hu, G. Zhu, and E. H.-M. Sha, “Minimizing system cost
with efficient task assignment on heterogeneous multicore processors considering
time constraint,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 8, pp. 2101–2113, 2014. [Pg.5]

216

REFERENCES

[32] H. Kanemitsu, M. Hanada, and H. Nakazato, “Clustering-based task scheduling in
a large number of heterogeneous processors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 11, pp. 3144–3157, 2016. [Pg.5], [Pg.29], [Pg.35],
[Pg.42], [Pg.44]

[33] P.-C. Hsiu, C.-K. Hsieh, D.-N. Lee, and T.-W. Kuo, “Multilayer bus optimization
for real-time embedded systems,” IEEE Transactions on Computers, vol. 61, no. 11,
pp. 1638–1650, 2012. [Pg.5], [Pg.42], [Pg.44]

[34] M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid for message-passing
systems,” IEEE transactions on parallel and distributed systems, vol. 1, no. 3, pp.
330–343, 1990. [Pg.6], [Pg.42]

[35] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations research,
vol. 9, no. 6, pp. 841–848, 1961. [Pg.6], [Pg.42]

[36] C. Krishna, “Fault-tolerant scheduling in homogeneous real-time systems,” ACM
Computing Surveys (CSUR), vol. 46, no. 4, p. 48, 2014. [Pg.7]

[37] M. Chetto, “Optimal scheduling for real-time jobs in energy harvesting computing
systems,” IEEE Trans. Emerging Topics Comput., vol. 2, no. 2, pp. 122–133, 2014.
[Online]. Available: https://doi.org/10.1109/TETC.2013.2296537 [Pg.7]

[38] G. Raravi, B. Andersson, V. Nélis, and K. Bletsas, “Task assignment algorithms
for two-type heterogeneous multiprocessors,” Real-Time Systems, vol. 50, no. 1, pp.
87–141, 2014. [Pg.7]

[39] S. Kriaa, L. Pietre-Cambacedes, M. Bouissou, and Y. Halgand, “A survey of ap-
proaches combining safety and security for industrial control systems,” Reliability
Engineering & System Safety, vol. 139, pp. 156–178, 2015. [Pg.7]

[40] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-aware schedul-
ing for real-time systems: A survey,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 15, no. 1, pp. 1–34, 2016. [Pg.7]

[41] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf, and Q. Zhu,
“Automotive cyber–physical systems: A tutorial introduction,” IEEE Design &
Test, vol. 33, no. 4, pp. 92–108, 2016. [Pg.13], [Pg.36], [Pg.121], [Pg.204]

217

https://doi.org/10.1109/TETC.2013.2296537

REFERENCES

[42] T. Mitra, J. Teich, and L. Thiele, “Time-critical systems design: A survey,” IEEE
Design & Test, vol. 35, no. 2, pp. 8–26, 2018. [Pg.13], [Pg.36], [Pg.121], [Pg.204]

[43] G. Nelissen, “Efficient optimal multiprocessor scheduling algorithms for real-time
systems,” Ph.D. dissertation, Université libre de Bruxelles, 2012. [Pg.19]

[44] C. Fidge, “Real-time scheduling theory,” 2002. [Pg.27]

[45] D. Gislason, Zigbee wireless networking. Newnes, 2008. [Pg.29]

[46] B. Chattopadhyay and S. Baruah, “A Lookup-Table Driven Approach to Parti-
tioned Scheduling,” in Real-Time and Embedded Technology and Applications Sym-
posium, 2011, pp. 257–265. [Pg.40]

[47] G. Xie, X. Xiao, H. Peng, R. Li, and K. Li, “A survey of low-energy parallel schedul-
ing algorithms,” IEEE Transactions on Sustainable Computing, 2021. [Pg.42]

[48] G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy consumption of real-
time parallel applications using downward and upward approaches on heterogeneous
systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068–
1078, 2017. [Pg.42], [Pg.44]

[49] J. Huang, R. Li, J. An, H. Zeng, and W. Chang, “A dvfs-weakly-dependent energy-
efficient scheduling approach for deadline-constrained parallel applications on het-
erogeneous systems,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2021. [Pg.43]

[50] G. Xie, G. Zeng, J. Jiang, C. Fan, R. Li, and K. Li, “Energy management for
multiple real-time workflows on cyber–physical cloud systems,” Future Generation
Computer Systems, vol. 105, pp. 916–931, 2020. [Pg.43], [Pg.44]

[51] S. Liden, “The evolution of flight management systems,” in Digital Avionics Systems
Conference, 1994. 13th DASC., AIAA/IEEE. IEEE, 1994, pp. 157–169. [Pg.63]

[52] V. Brocal, P. Balbastre, R. Ballester, and I. Ripoll, “Task period selection to mini-
mize hyperperiod,” in ETFA2011. IEEE, 2011, pp. 1–4. [Pg.65]

218

REFERENCES

[53] T. Chantem, X. Wang, M. D. Lemmon, and X. S. Hu, “Period and deadline selection
for schedulability in real-time systems,” in 2008 Euromicro Conference on Real-
Time Systems, 2008, pp. 168–177. [Pg.65]

[54] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-
Vincentelli, “Period optimization for hard real-time distributed automotive sys-
tems,” in Proceedings of the 44th annual Design Automation Conference, 2007, pp.
278–283. [Pg.65]

[55] I. Ripoll and R. Ballester-Ripoll, “Period selection for minimal hyperperiod in peri-
odic task systems,” IEEE Transactions on Computers, vol. 62, no. 9, pp. 1813–1822,
2012. [Pg.65]

[56] R. van Glabbeek and P. Höfner, “Split, send, reassemble: A formal specification of
a can bus protocol stack,” arXiv preprint arXiv:1703.06569, 2017. [Pg.66]

[57] S. S. Craciunas, R. S. Oliver, M. Chmeĺık, and W. Steiner, “Scheduling real-time
communication in ieee 802.1 qbv time sensitive networks,” in Proceedings of the 24th
International Conference on Real-Time Networks and Systems, 2016, pp. 183–192.
[Pg.66], [Pg.206]

[58] R. S. Oliver, S. S. Craciunas, and W. Steiner, “Ieee 802.1 qbv gate control list
synthesis using array theory encoding,” in 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2018, pp. 13–24. [Pg.66],
[Pg.206]

[59] TSN, “Time-Sensitive Networking (TSN),” https://en.wikipedia.org/wiki/Time-
Sensitive Networking, 2012. [Pg.66], [Pg.206]

[60] G. Xie, J. Jiang, Y. Liu, R. Li, and K. Li, “Minimizing energy consumption of real-
time parallel applications using downward and upward approaches on heterogeneous
systems,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1068–
1078, 2017. [Pg.82], [Pg.103]

[61] K. Li, “Scheduling precedence constrained tasks with reduced processor energy on
multiprocessor computers,” IEEE Transactions on Computers, vol. 61, no. 12, pp.
1668–1681, 2012. [Pg.166]

219

REFERENCES

[62] Y. C. Lee and A. Y. Zomaya, “Energy conscious scheduling for distributed comput-
ing systems under different operating conditions,” IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 8, pp. 1374–1381, 2010. [Pg.166]

[63] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, “An energy-efficient task
scheduling algorithm in dvfs-enabled cloud environment.” J. Grid Comput., vol. 14,
no. 1, pp. 55–74, 2016. [Pg.166]

[64] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang, “Enhanced energy-
efficient scheduling for parallel applications in cloud,” in 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE, 2012, pp. 781–786. [Pg.166]

[65] H. Djigal, J. Feng, J. Lu, and J. Ge, “Ippts: An efficient algorithm for scientific
workflow scheduling in heterogeneous computing systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 5, pp. 1057–1071, 2021. [Pg.175]

220

	1 Introduction
	1.1 Related Work
	1.2 Challenges
	1.3 Objectives
	1.4 Summary of work done
	1.5 Organization of the Thesis

	2 Background and Related Work
	2.1 An Overview of Real-time Systems
	2.1.1 Application Layer
	2.1.1.1 Real-time Task Model

	2.1.2 Real-time Scheduler
	2.1.3 Hardware Platform

	2.2 Types of Task Constraints:
	2.3 Classification of Real-Time Scheduling Algorithms
	2.4 A Discussion with Motivational Examples
	2.5 Multiprocessor Scheduling - A Brief Survey
	2.5.1 An Overview of HEFT & PEFT

	2.6 Summary

	3 QoS Aware Scheduling of Independent Task Sets on Homogeneous Distributed Systems
	3.1 Problem Description
	3.1.1 An Optimal Solution Approach (MMCKP-DP)
	3.1.2 Accurate Low Overhead Level Allocator (ALOLA)
	3.1.3 Example: Service-level Assignment
	3.1.4 Offline Schedule Generation

	3.2 Experiments and Results
	3.2.1 Data Generation Framework
	3.2.2 QoS Measurements
	3.2.3 Time Measurements: Results

	3.3 Case Study: Flight Management System
	3.4 Applicability Considerations
	3.5 Summary

	4 Optimal Scheduling of PTGs on Heterogeneous Distributed Systems
	4.1 The Task and Platform Models
	4.2 Earliest/Latest Start Times for PTG Nodes
	4.3 ILP Formulation: ILP-SATC
	4.3.1 Unique Start Time Constraint
	4.3.2 Resource Constraint
	4.3.3 Dependency Constraint
	4.3.4 Linearization of Non-linear Term
	4.3.5 Deadline Constraint
	4.3.6 Objective Function
	4.3.7 Complexity Analysis

	4.4 ILP Formulation: ILP-SANC
	4.4.1 Unique Resource Assignment:
	4.4.2 Unique Quality-level Assignment:
	4.4.3 Dependency Constraint:
	4.4.4 Linearization of Non-linear Term
	4.4.5 Non-overlapping Constraints:
	4.4.6 Deadline Constraint:
	4.4.7 Objective Function
	4.4.8 Complexity Analysis

	4.5 Experimental Evaluation
	4.6 Case Study: Adaptive Cruise Controller
	4.7 Summary

	5 Heuristic PTG Scheduling Strategies on Heterogeneous Distributed Systems
	5.1 The Task and Platform Models
	5.2 Heuristic Algorithms
	5.2.1 Global Slack Aware Quality-level Allocator (G-SAQA)
	5.2.2 Total Slack Aware Quality-level Allocator (T-SAQA)

	5.3 Experimental Evaluation
	5.3.1 Performance evaluation using benchmark PTGs
	5.3.2 Performance evaluation using randomly generated PTGs

	5.4 Case Study: Traction Controller
	5.5 Summary

	6 PTG Scheduling on Shared-Bus Based Heterogeneous Platforms
	6.1 System Model
	6.2 Earliest/Latest Start Times for PTG Nodes
	6.3 ILP Formulation: ILP-ETR
	6.3.1 Unique Start Time Constraints
	6.3.2 Linearization of Non-linear Term
	6.3.3 Resource Constraints
	6.3.4 Dependency Constraints
	6.3.5 Deadline Constraint:
	6.3.6 Objective Function
	6.3.7 Complexity Analysis

	6.4 ILP Formulation: ILP-NC
	6.4.1 Unique Resource Assignment:
	6.4.2 Dependency Constraints:
	6.4.3 Non-overlapping Constraints:
	6.4.4 Linearization of Non-linear Term
	6.4.5 Deadline Constraint:
	6.4.6 Objective Function
	6.4.7 Complexity Analysis

	6.5 Heuristic: CC-TMS
	6.5.1 Upward Rank
	6.5.2 Earliest Start and Finish Time
	6.5.3 Co-scheduling Tasks and Messages
	6.5.4 Complexity Analysis
	6.5.5 Example

	6.6 Experimental Evaluation
	6.7 Case Study: Traction Controller
	6.8 Summary

	7 Scheduling Multiple Independent PTG Applications on Shared-Bus Platform
	7.1 Models and Terminologies
	7.2 Earliest/Latest Start Times for PTG Nodes
	7.3 ILP Formulation: ILP-ES
	7.3.1 Unique Start Time Constraints
	7.3.2 Resource Constraints
	7.3.3 Dependency Constraints
	7.3.4 Deadline Constraint
	7.3.5 Objective Function

	7.4 Proposed Scheme
	7.4.1 Task Priority Generator (TPG)
	7.4.2 Task and Message Co-scheduler (TMC)
	7.4.3 Complexity Analysis of TMC
	7.4.4 Slack Aware Frequency Level Allocator (SAFLA)

	7.5 Experimental Evaluation
	7.6 Case Study
	7.7 Summary

	8 Conclusion and Future Work
	8.1 Discussion and Summarization
	8.2 Future Works
	8.3 Disseminations out of this Work

	References

